Serial Communication basics

لالتو معطقى بيل

INTER-INTEGRATED CIRCUIT PROTOCOL

Eye on History

- 1982 by Philips Semiconductor (now NXF Semiconductors).
- 2006, no licensing fees are required to implement the I²C protocol.

I2C Features

- Two bus lines are required (SCL, SDA)
- No strict baud rate, the master generates a bus clock
- Simple master/slave relationships exist between all components
- Each device connected to the bus is softwareaddressable by a unique address
- I2C is a true <u>multi-master</u> bus providing arbitration and collision detection

I2C Configuration

PHYSICAL LAYER

р р

Physical Layer: Open-Collector/Drain

Effect of cable length

 $Rp = 10 k\Omega$ and Cp = 300 pF. The SCL clock runs with 100 kHz.

Physical Layer: Schmitt Gates

•Bit Timing: Non Return to Zero (NRZ) 1= "recessive" and 0="dominant"

Start/Stop bits SCL SDA Data Transfer START STOP Condition Condition

Data Byte

Each byte of data (including the address byte) is followed by one ACK/NACK bit from the receiver

Requirements For Devices

- 1. Both, SDA and SCL, must be open drain.
- 2. In most I2C buses, the low and high input voltage level thresholds of SDA and SCL must depend on Vcc.
- 3. The SCL and SDA signals must be sampled by Schmitt Trigger inputs, i.e. with a certain hysteresis.
- 4. Spikes in SCL and SDA signals must be filtered .
- Setup and hold times; this includes a specified maximum SCL clock rate (100 kHz for normal speed, 400 kHz for full speed).

DATA LINK LAYER

1011111100 A

000

4980

10101

10%

Data Frame: Write to One Register in a Device

Data byte field could be more thane one byte

Data Frame: Read From One Register in a Device

Data Frame: Multiple frames From One Master

Read From One Register in a Device Device (Slave) Address (7 bits) Register Address N (8 bits) Data Byte From Register N (8 bits) Device (Slave) Address (7 bits) Data Byte From Register N (8 bits) A5 A4 A3 A2 A1 A0 D3 D2 D1 D0 NA A5 A4 A3 A2 A1 A0 D5 D4 B6 B5 B1 BO D7 D6 R/W = 1 ACK ACK Repeated START $R/\overline{W} = 0$ ACK START NACK STOP ACK

Not Acknowledge

- 1. The receiver is unable to receive or transmit because it is not ready to start communication with the master.
- 2. During the transfer, the receiver gets data or commands that it does not understand.
- 3. During the transfer, the receiver cannot receive any more data bytes.
- 4. A master-receiver is done reading data and indicates this to the slave through a NACK.

Extension of the I2C Specifications

Read/write 10 bit Address

Serial Peripheral Interface PROTOCOL

SPI

PROTOCOL

Eye on History

1. By Motorola company (now Freescale), in the Mid 1980.

SPI communication

- Synchronous serial communication interface
- Complete protocol flexibility for the bits transferred, not limited to 8-bit words
- Requires 2 or 3 wires for the communication
 +1 wire for each device in the bus
- Slaves send data to master at the same time when master is sending data to them.

SPI wiring

Circular Buffer

0

Ω

Daisy Chain Configuration

SPI Modes

				\backslash						
PHASE	CLKPOL	SCK Transmit Edge	SCK Receive Edge	SCK Idle State						
0	0	Falling	Rising	Low		CDT			40	c III
0	1	Rising	Falling	High		2 L J	_ [100	JE	5
1	0	Rising	Falling	Low						
1	1	Falling	Rising	High						
SC	CK	CPOL= CPOL=	=0 =1	X	-()-	K	X	X	X	
0000	SS									
	-	Cycle	# 🔼 1	<u>X 2 X</u>	<u>з Х</u>	4 X 5	X 6	X 7	X 8	X
CPH/	A = 0	MIS	50 Z 1	X 2 X	3 🗶	4 (5	6	7	8 (X Z
		MO	SI Z) 1	<u>X 2 X</u>	з Х	4 X 5	X 6	X 7	<u>) 8</u>	Xz
		Cycle	#	1 / 2	χ 3	<u>X 4 X</u>	5 X	6 X	7 X	<u>8)</u>
2PH	A=1	MIS	50 Z/	1 / 2	Х 3	<u>X 4 X</u>	5 X	<u>6 X</u>	7 X	<u>8)</u> (z
		MO	SI ZX	1 / 2	X 3	<u>X 4 X</u>	5 X	6 X	7 X	8 (Z

