Examiner : Dr. Mustafa M. Shiple
Term: Spring 2023
Subject: Autonomous Multiagent Systems (AI 314)
Exam Time:60 min
Score: 10 Marks

Instructions:

- Use the space provided to write your answers.
- Ask in case of doubt.

ANSWER THE FOLLOWING QUESTIONS:

1. Fill in the spaces
(a) Genetic Algorithms (GA) use principles of natural evolution. There are five important features of GA
(b) Mutation is a technique that \qquad
(c) IF environment is nondeterministic, the agent doesn't know what isstate after \qquad
(d) In games theory, Zero-sum means \qquad
(e) Monte Carlo methods rely on \qquad . sampling to obtain numerical results.

Solution:

(a) Initial Population, Fitness Function, Selection, Crossover, Mutation.
(b) flips a randomly selected gene in a chromosome.
(c) next, taking an action
(d) one players loss is the others gain.
(e) repeated random.
2. Suppose a genetic algorithm uses chromosomes of the form $\mathrm{x}=$ abcdefgh with a fixed length of eight genes. Each gene can be any digit between 0 and 9 . Let the fitness of individual x be calculated as:

$$
f(x)=(a+b)(c+d)+(e+f)(g+h)
$$

and let the initial population consist of four individuals with the following chromosomes:

$$
\begin{aligned}
& \mathrm{x} 1=2392212485 \\
& \mathrm{x} 2=65413532 \\
& \mathrm{x} 3=871265401 \\
& \mathrm{x} 4=41852094
\end{aligned}
$$

if individual operations are defined as:-

- Cross operation: a onepoint crossover at the middle point.
- Mutation operation: third digit only in last generated offspring.
- Roulette wheel : when it rotated the outcome will be $\{3,1,4,2,1,2,4,3,4,1,4,5,1,3,2,6,4,2,3,5\}$
(a) Perform two complete cycles of genetic algorithm, each generation consists of $\mathbf{6}$ chromosomes.
[Total Marks is 10]

Solution:

$$
\begin{aligned}
& f(x 1)=(2+3)(9+2)+(1+2)(8+5)=-16 \\
& f(x 2)=(6+5)(4+1)+(3+5)(3+2)=9 \\
& f(x 3)=(8+7)(1+2)+(6+6)(0+1)=23 \\
& f(x 4)=(4+1)(8+5)+(2+0)(9+4)=-19
\end{aligned}
$$

order: x3-x2-x1-x4
Due to roulette wheel and cross operation the pairs are :

$$
\begin{aligned}
(x 1, x 3) & =x 5=23926601=(2+3)(9+2)+(6+6)(0+1)=5 \\
(x 4, x 2) & =x 6=41853532=(4+1)(8+5)+(3+5)(3+2)=-5 \\
(x 3, x 2) & =x 7=87123532=(8+7)(1+2)+(3+5)(3+2)=15 \\
(x 1, x 4) & =x 8=23922094=(2+3)(9+2)+(4+1)(8+5)=-17 \\
(x 4, x 1) & =x 9=41851285=(4+1)(8+5)+(1+2)(8+5)=-18 \\
x 3 & =87126601=23
\end{aligned}
$$

Mutation : x9 = $41151285=-11$
first generation :

$$
\begin{aligned}
& 1 x 3=87126601=23 \\
& 2 x 7=87123532=15 \\
& 3 x 5=23926601=5 \\
& 4 x 6=41853532=-5 \\
& 5 x 9=41851285=-11 \\
& 6 x 8=23922094=-18
\end{aligned}
$$

Due to roulette wheel and cross operation the pairs are :

$$
\begin{aligned}
(x 6, x 9) & =x 10=41851285=(2+3)(9+2)+(6+6)(0+1)=-17 \\
(x 3, x 5) & =x 11=87126601=(4+1)(8+5)+(3+5)(3+2)=23 \\
(x 7, x 8) & =x 12=87122094=(8+7)(1+2)+(3+5)(3+2)=1 \\
(x 6, x 7) & =x 13=41853532=(2+3)(9+2)+(4+1)(8+5)=-5 \\
(x 3, x 9) & =x 14=87121285=(4+1)(8+5)+(1+2)(8+5)=2 \\
x 3 & =87126601=23
\end{aligned}
$$

Mutation : x $14=87021285=3$ Second offspring :

$$
\begin{aligned}
x 10 & =41851285 \\
x 11 & =87126601 \\
x 12 & =87122094 \\
x 13 & =41853532 \\
x 14 & =87121285 \\
x 3 & =87126601=23
\end{aligned}
$$

