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Games types
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Deterministic Chance

Perfect 

information

Chess , go Monopoly , backgammon

Imperfect 

information 

battleship Solitaire
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Definitions
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• More than one player game

• Players alternate moves 

• Zero-sum: one player’s loss is the other’s gain

• Perfect information: both players have access 
to complete information about the state of the 
game.  No information is hidden from either 
player.

• No chance (e.g., using dice) involved 

• Examples: Tic-Tac-Toe, Checkers, Chess, 
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Definitions II
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S0: The initial state, which specifies how the game is set up at the start.

• TO-MOVE(s): The player whose turn it is to move in state s (sometimes called player(s)).

• ACTIONS(s): The set of legal moves in state s.

• RESULT(s, a): The transition model, which defines the state resulting from taking action a in state s.

• IS-TERMINAL(s): A terminal test, which is true when the game is over and false otherwise. States where the game has 

ended are called terminal states. 

• UTILITY(s, p):defines the final numeric value to player p when the game ends in terminal state s.
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State Space Graph (Game Tree)
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a graph where the vertices are states, the edges are moves and a state might be reached by multiple paths

MAX has 9 possible moves

MIN has 8 possible moves

State space= 9 x 8

State space= 9 x 8 x 7

State space= 9

State space= 9!
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Optimal Decisions in Games
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• Search – no adversary

• Solution is (heuristic) method for finding goal

• Heuristics techniques can find optimal solution

• Evaluation function: estimate of cost from start to goal through given node

• Examples: path planning, scheduling activities

• Games – adversary

• Solution is strategy 

• strategy specifies move for every possible opponent reply.

• Time limits force an approximate solution

• Evaluation function: evaluate “goodness” of game position

• Examples: chess, checkers
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Minimax algorithm (Minimax value)
Given a game tree, the optimal strategy can be determined by working out the minimax value of each 
state in the tree.
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Minimax pseudocode
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MINIMAX(s) = 8<

:

if (IS-TERMINAL(s)) UTILITY(s;MAX) 

if )TO-MOVE(s)== MAX( maxa2Actions(s) MINIMAX)RESULT)s; a((

if ) TO-MOVE(s)== min( mina2Actions(s) MINIMAX(RESULT(s; a))
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Minimax value 

MINIMAX(s) = 8<

:

if (IS-TERMINAL(s)) UTILITY(s;MAX) 

if )TO-MOVE(s)== MAX( maxa2Actions(s) MINIMAX)RESULT)s; a((

if ) TO-MOVE(s)== min( mina2Actions(s) MINIMAX(RESULT(s; a))
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The Minimax Search Algorithm
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if (IS-TERMINAL(s)) UTILITY(s;MAX) 

if )TO-MOVE(s)== MAX( maxa2Actions(s) MINIMAX)RESULT)s; a((

if ) TO-MOVE(s)== min( mina2Actions(s) MINIMAX(RESULT(s; a))



Dr. Shiple

Processing time is crucial
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MINIMAX(root) = max(min(3;12;8);min(2;x;y);min(14;5;2))

Is the minimax decision are dependent on the values x and y?
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Principal of pruning
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Which node we have to 

calculate ??

The general principle is this: 

1. consider a node n somewhere in the tree, such that Player has a choice of moving to n.

2. If Player has a better choice either at the same level (m0) or at any point higher up in the tree (m), then 

Player will never move to n.

n m0 n

m =3
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Alpha-Beta Pruning
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Heuristic Alpha-Beta Tree Search
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cut off the search early and apply a heuristic evaluation function to states, effectively treating nonterminal 

nodes as if they were terminal.
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EVAL(s; p)=UTILITY(s; p) @ terminal state states
UTILITY(loss; p) ≤  EVAL(s; p) ≤ UTILITY(win; p) @ non- terminal state 
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Evaluation Function



Dr. Shiple 17

Conditions of Evaluation Function

1. The computation must not take too long! (The whole point is to search faster.) 

2. The evaluation function should be strongly correlated with the actual chances of winning.
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Example of Evaluation function 

one category might contain all two pawn versus one-pawn endgames.
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82% win , 2% lose, 16% draw

Expected Value: (0.82x1)+(0.02x0)+ (0.16x0.5) = 0.90

Material Value : pawn is worth 1, a knight or bishop is worth 3, a 

rook 5, and the queen 9.

Weighted Linear Function

Where do the features and weights come from? 

1. Culture of human chess-playing experience. 

2. Machine learning techniques



Thank You
http://drshiple-courses.weebly.com/autonomous-multiagent-systems.html


