SEARCH IN COMPLEX ENVIRONMENTS II

若

Evolutionary algorithms()

Developed: USA in the 1970's
Early names: J. Holland, K. DeJong, D. Goldberg

Genetic Algorithms

How is a population with increasing fitness generated?

- Let us consider a population of rabbits. Some rabbits are faster than others, and we may say that these rabbits possess superior fitness, because they have a greater chance of avoiding foxes, surviving and then breeding.
- If two parents have superior fitness, there is a good chance that a combination of their genes will produce an offspring with even higher fitness. Over time the entire population of rabbits becomes faster to meet their environmental challenges in the face of foxes.

How is a population with increasing fitness generated?

1. Initial Population
2. Fitness Function
3. Selection
4. Crossover
5. Mutation

Case Study: 8 Queen problem

Representation (numeric)

Selection (fitness function)and Crossover

Mutation , Elitism \& Culling

$[2,4,7,4,2,4,1,1]$
$[1,5,7,2,2,4,6,7]$
$[2,1,3,3,7,4,2,6]$

$$
[2,4,7,4,2,5,1,1]
$$

$$
[1,5,7,2,2,4,6,7]
$$

$$
[2,1,4,3,7,4,2,6]
$$

$$
[2,4,7,4,8,5,5,2] \quad 24
$$

$$
[3,2,7,5,2,4,1,1] \quad 23
$$

$$
[1,5,7,2,6,1,3,5] \quad 22
$$

Elitism: guarantees that overall fitness will never decrease over time
Culling: individuals below a given threshold are discarded, can lead to a speedup

Genetic algorithm

```
function GENETIC-ALGORITHM(population, fitness) returns an individual
    repeat
        weights \(\leftarrow\) WEIGHTED-B Y(population, fitness)
        population \(2 \leftarrow\) empty list
        for \(i=1\) to \(\operatorname{SIZE}\) (population) do
            parent 1 , parent \(2 \leftarrow\) WEIGHTED-RANDOM-CHOICES(population, weights, 2)
            child \(\leftarrow\) REPRODUCE(parent1, parent2)
            if (small random probability) then child \(\leftarrow\) MUTATE(child)
            add child to population 2
        population \(\leftarrow\) population 2
    until some individual is fit enough, or enough time has elapsed
    return the best individual in population, according to fitness
function REPRODUCE(parent1, parent2) returns an individual
    \(n \leftarrow\) LENGTH(parent 1)
    \(c \leftarrow\) random number from 1 to \(n\)
    return Append(Substring(parentl \(, 1, c), \operatorname{SUBSTRING}(\) parent \(2, c+1, n)\) )
```


Genetic algorithms: case study

find the maximum value of the function $\left(15 x-x^{2}\right)$ where parameter x varies between 0 and 15

(a) Chromosome initial locations.

(b) Chromosome final locations.

String Representation

Integer	Binary code	Integer	Binary code	Integer	Binary code
1	0001	6	0110	11	1011
2	0010	7	0111	12	1100
3	0011	8	1000	13	1101
4	0100	9	1001	14	1110
5	0101	10	1010	15	1111

Random Selection

Chromosome label	Chromosome string	Decoded integer	Chromosome fitness $f(x)$	Fitness ratio, $\%$$=\frac{f(x)}{\sum f(s) x}$
X1	1	1	0	0
0	1	0	12	4
X2	0	0	1	1
X3	1	1	1	0
X4	0	1	1	14
X5	10	14	16.5	
X6	1	0	14	20.2

Roullette wheel selection

The most commonly used chromosome selection techniques is the roulette wheel selection.

Crossover

Splitting point randomly

Elitism

Mutatiom opperator

\square Mutation represents a change in the gene.
\square Mutation is a background operator. Its role is to provide a guarantee that the search algorithm is not trapped on a local optimum.

- The mutation operator flips a randomly selected gene in a chromosome.
\square The mutation probability is quite small in nature, and is kept low for GAs, typically in the range between 0.001 and 0.01 .

Mutatiom

The gemetic algorithmm cycle

Search with
 Nondeterministic Actions

Definition

Environment is nondeterministic, the agent doesn't know what state it transitions to after taking an action

AND-OR search trees

In a nondeterministic environment, branching is also introduced by the environment's choice of outcome for each action (AND node)

In a deterministic environment, the only branching is introduced by the agent's own choices in each state:(OR node)

Looping

cyclic solution : to keep trying Action until it works
[while State=1 do Right;Suck]

Search in Partially Observable Environments

known environment, unknown location

No observation at all.

Imagine the light is down in home !! What u have to do ?

Initial state ?(may be known or not!)

known environment, unknown location

known environment, unknown location

Imagine the light is down in home !! What u have to do ?

Initial state ?(may be known or not!) but it is limited to state space

Actions: 1- based on current state

$$
\operatorname{Actions}(b)=\bigcup_{s \in b} \operatorname{ACTIONS}_{P}(s)
$$

Actions : 2-based on current state (some actions are unsafe) \rightarrow

Limited to safe actions.

Complete solution for vacuum world

