SEARCH IN COMPLEX
ENVIRONMENTS
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Manhattan Distance

Manhattan distance is a distance metric between two points in a N dimensional vector space
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Local Search and Optimization Problems

Local search algorithms: operate by searching from a start state to neighboring states, without

keeping track of the paths, nor the set of states that have been reached.
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Definitions

Ridges: a sequence of local maxima that is very difficult for greedy algorithms to navigate

Plateaus: A plateau is a flat area of the state-space landscape
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Pseudo code (greedy local search)

function HILL-CLIMBING( problem) returns a state that is a local maximum
current < problem.INITIAL
while rrue do
neighbor < a highest-valued successor state of current
if VALUE(neighbor) < VALUE(current) then return current
current <—neighbor




Local search and optimization

Local search
o Keep track of single current state

° Move only to neighboring states
° |gnore paths
o Use little space

Advantages:
o Use very little memory
> Can often find reasonable solutions in large or infinite (continuous) state spaces.
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Definitions

gradient descent (also often called steepest descent) is a first-order iterative optimization algorithm
for finding a local minimum of a differentiable function.
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Variants Of Hill Climbing

1. Stochastic hill cIimbing :chooses at Stochastic hill climbing random from among
the uphill moves;

2. First-choice hill cIimbing . implements stochastic First-choice hill climbing hill

climbing by generating successors randomly until one is generated that is better than the
current state.

° For each restart: run until termination vs. run for a fixed time
° Run a fixed number of restarts or run indefinitely

3. Randome-restart Hill Climbing,: if at first you Random-restart hill climbing don’t

succeed, try, try again.” It conducts a series of hill-climbing searches from randomly
generated initial states, until a goal is found.



Simulated Annealing

Combine hill climbing with a random walk in a way that yields both efficiency and completeness.

function SIMULATED-ANNEALING( problem. schedule) returns a solution state
current < problem.INITIAL
forr=1tocdo
I+ schedule(t) Instead of picking the best move, however, it picks a random
if 7' = 0 then return current FIENS
next+—a randomly selected successor of current
AE <+ VALUE(current) — VALUE(next)
if AE > 0 then current < next
else current < next only with probability ¢*£/T Boltzmann distribution
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Simulated Annealing

Temperature

if AE > 0 then current < next

else current < next only with probability ¢2£/T 71

0 20 40 60 80 100
Iteration

=
o
1

o
0

e
=)

high T: probability of “locally bad” move is higher

low T: probability of “locally bad” move is lower

<
£
1

Metropolis Criterion

e
o

o
o
1

T T T T T T
0 20 40 60 80 100
Iteration




max § = eb/t

Temperature [t

Simulated Annealing decreases iy
: - for each step W
(Time Gradiant aware)

N queens (n = 4, startingTemperature = 2)

Ww N H O

t A [max g ﬁ“ﬁ
20| |20 any 7 Hgr
1| 0.61 Ter
2| 037 Wiy Wiy

3| o022 -4 -3 -

4| 014 A=-2 A=-1
=041 >0.37 9=D.5u < 0.61




L
j‘@’
Wy
2
@-oss_ o
Simulated Annealing ‘ﬁf@j"ﬁ
(Time Gradiant aware) f
N queens (n = 4, startingTemperature = 2) g
= >

|

aQr
0

1l

o

n

]

1A

=

o™

Step 1 —
t ]| a | max @) |V i P g
1.6 =0 any Yi ﬁ @
1| 0.54 "@“ 12
2| 0.29 Wiy * Wiy
3| 0.15 :-4: 3 i 4 i 5
4| 0.08 A=-1 A=-2 A= +2

(=088 =054 {=031 >029 [{=rva =any




i
| @
W
Simulated Annealing W
(Time Gradiant aware) -1 :
N queens (n = 4, startingTemperature = 2) A=+2
=n/a < any
wep 2
t A maxg )
1.2 =20 any
1| 043 Wiy
2| 0.19 g
3| 0.08 :-2: 6 i 7
4| 0.04 A=-1 h=-2

(P=074 >043 =019 =019




08| =0 any

Simulated Annealing 1] oz Wy g

2 | 0.08
(Time Gradiant aware) 5] o0z | [1 8
N queens (n = 4, startingTemperature = 2) 4| 0.01 A=+2
9= n/a < any
Step 4 _
t || & |max(@) i i i
0.4 =0 any g @
1| 0.08 Wiy Wiy Wiy
2| 0.01 i i i
3| o000 :_3: 9 i 10 i 11
2o afu.g? > 0.01 ‘?':15-'” >0.08 ‘?-:L;a < any




Local beam search

Idea: Keeping only ONE node in memory is an extreme reaction to memory problems.

Local beam save n nodes in stack: k = 1 = Hill climbing , k= e = Best first search

variant called Stochastic Beam Search
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