SEARCH IN COMPLEX ENVIRONMENTS

Manhattan Distance

Manhattan distance is a distance metric between two points in a N dimensional vector space

the second second	8	7	6	5	4	3	2	1
Hamming = 5	×	V	×	×	V	V	×	×
Manhattan = 10	8	7	6	5	4	3	2	1
(1 + 2 + 2 + 2 + 3)	3	0	2	2	0	0	2	1

board

goal

Local Search and Optimization Problems

Local search algorithms: operate by searching from a start state to neighboring states, without keeping track of the paths, nor the set of states that have been reached.

Definitions

Ridges: a sequence of local maxima that is very difficult for greedy algorithms to navigate

Plateaus: A plateau is a flat area of the state-space landscape

Pseudo code (greedy local search)

function HILL-CLIMBING(problem) returns a state that is a local maximum
current ← problem.INITIAL

while *true* do

 $neighbor \leftarrow$ a highest-valued successor state of *current* if VALUE(*neighbor*) \leq VALUE(*current*) then return *current current* \leftarrow *neighbor*

Local search and optimization

Local search

- Keep track of single current state
- Move only to neighboring states
- Ignore paths
- Use little space

Advantages:

- Use very little memory
- Can often find reasonable solutions in large or infinite (continuous) state spaces.

Example

Definitions

gradient descent (also often called **steepest descent**) is a first-order iterative optimization algorithm for finding a local minimum of a <u>differentiable function</u>.

Example

Variants Of Hill Climbing

- 1. Stochastic hill climbing :chooses at Stochastic hill climbing random from among the uphill moves;
- 2. First-choice hill climbing : implements stochastic First-choice hill climbing hill climbing by generating successors randomly until one is generated that is better than the current state.
 - For each restart: run until termination vs. run for a fixed time
 - Run a fixed number of restarts or run indefinitely
- **3. Random-restart Hill Climbing**,: If at first you Random-restart hill climbing don't succeed, try, try again." It conducts a series of hill-climbing searches from randomly generated initial states, until a goal is found.

Simulated Annealing

Combine hill climbing with a random walk in a way that yields both efficiency and completeness.

function SIMULATED-ANNEALING(problem, schedule) returns a solution statecurrent \leftarrow problem.INITIALfor t = 1 to ∞ do $T \leftarrow schedule(t)$ Instead of picking the best move, however, it picks a random
moveif T = 0 then return currentInstead of picking the best move, however, it picks a random
movenext \leftarrow a randomly selected successor of current
 $\Delta E \leftarrow VALUE(current) - VALUE(next)$
if $\Delta E > 0$ then current \leftarrow next
else current \leftarrow next only with probability $e^{\Delta E/T}$ Boltzmann distribution

if $\Delta E > 0$ then *current* \leftarrow *next* else *current* \leftarrow *next* only with probability $e^{\Delta E/T}$

high T: probability of "locally bad" move is higher low T: probability of "locally bad" move is lower

Simulated Annealing (Time Gradiant aware)

N queens (n = 4, startingTemperature = 2)

Ref. : https://docs.optaplanner.org/6.2.0.Final/optaplanner-docs/html/ch10.html

Simulated Annealing (Time Gradiant aware)

N queens (n = 4, startingTemperature = 2)

t

Simulated Annealing (Time Gradiant aware)

N queens (n = 4, startingTemperature = 2)

t

1.2

Simulated Annealing (Time Gradiant aware)

N queens (n = 4, startingTemperature = 2)

Local beam search

Idea: Keeping only **ONE** node in memory is an extreme reaction to memory problems.

Local beam save n nodes in stack: $k = 1 \rightarrow Hill$ climbing , $k = \infty \rightarrow Best$ first search

variant called Stochastic Beam Search

Example

