Searcning . i
Algoritnms

Dr. Mustafa Shiple

Planning

Basis of comparison

Basic knowledge

Efficiency

Cost

Performance

Algorithms

Xi
° Edge cost 6 °

]

© . O

Informed search

Uses knowledge to find the steps to the

solution.

Highly efficient as consumes less time and

cost.

Low

Finds the solution more quickly.

Heuristic depth-first and A* search

Xi
° Edge cost 1 o

© . O

Uninformed search

No use of knowledge

Efficiency is mediatory

Comparatively high

Speed is slower than the
informed search.

Depth-first search, breadth-
first search, and lowest cost
first search

Planning

* Definition: is the process of determining a sequence of actions and
motions, by looking ahead.

Search techniques :
Breadth First Search (BFS)

Breadth-first search (BFS)

* Civil engineer, pioneering computer scientist,
inventor and businessman.

* The functional program-controlled Turing-
complete Z3 (First digital computer in the world).

* He designed Plankalkul, the first high-level
programming language.

* BFS invented in 1945, in his (rejected for 400
Mark) Ph.D. thesis on the Plankalkul
programming language

Konra_q_ Zuse
Germany 1910-1995

unvisited DB

unvisited DB °

unvisited DB

unvisited DB

unvisited DB

unvisited DB

expansion in
next level

unvisited DB

1
1 1 1 |
Early exit
; 1 .
o Edge cost 1 o
1
1 1 1

Depth-first search (DFS):

unvisited DB
A

X B
Edge cost 1 C
1 E

unvisited DB °

unvisited DB

unvisited DB

Time and space complexity (BFS)

b = # successors (in our case b= 2)
maximum branching factor

d — depth of the optimal solution

m — maximum depth of the state space

1+b+b2+b3+........ +bd = O(bY) if goal is exist= 1+21+22
1+b+b2+b3+........ +b™ = O(b™) if not exist

b=10andd=10 --> 3 hours @ processor has 1 million nodes/secyﬁﬁ'f’\

10 terabytes of memory @ each node needs 1 KByte!!!
1 node
b nodes

b? nodes

space complexity (memory) = should keeps all nodes = time complexity

m tiersy

Time and space complexity (DFS)

b = # successors (in our case b= 2)

maximum branching factor m tiers

d — depth of the optimal solution

m — maximum depth of the state space
1+b+b2+b3+........ +b™ = O(b™)

O(bm) = 2*3=6 = (A,D,B,B,E, C)nodes are explor

backtracking search uses even less
memory

1 node
b nodes

b? nodes

bm.
nodes

o

Time and space complexity (DFS* : backtracking

search)

1 node
b nodes

b? nodes

b = # successors (in our case b= 2)

maximum branching factor m tiers

bm.
nodes

d — depth of the optimal solution

o

m — maximum depth of the state space
1+b+b2+b3+........ +b™ = O(b™)

backtracking search uses even less
memory

BFS vs DFS

Breadth- Depth- Backtracking
First First search

Complete? Yes! No No
Optimal cost? Yes® No No
Time O(b?) o™y o™
Space O(b?) O(bm) O(m)

Planning

* Definition: is the process of determining a sequence of actions and
motions, by looking ahead.

Search techniques :
Breadth First Search (BFS) (uniform edge cost)
Dijkstra’s algorithm (non-uniform edge cost) (surface condition)

Search Tree

Search
algorithms

Uniformed Informed
search search
strategies strategies

Cost Cost
insensitive sensitive

* Initialization: (start from initial State) \ »
X; T\‘XE;sgerW. Dijkstra i
G Edge cost B ° S
Vi C(x) PPR
2
1 : 2
-

el *C(x): Optimal cost-to-come
1 »

unvisited DB Visited DB

 Step 1: (start from least C(x) which is A again)

Xj

G Edge cost 6

N

|

unvisited DB Visited DB

 Step 2: (start from least C(x) which is D)

Xj

?
G Edge cost B °

e >

unvisited DB Visited DB

* Step 3: (start from least C(x) which is E) B

X; ? | Edsgor W. Dijkstra |

° Edge cost 6 '°

C(x) PPR

e >

*C(x): Optimal cost-to-come

1 *PPR: preferrec

unvisited DB Visited DB

A
B NULL
C NULL
D
E

 Step 4: (start from least C(x) which is B) \ |
X T.'\“.Ei“sgerw. Dijkstra a
G Edge cost B ° i
i C(x) PPR
~5
1 2 2
s

*C(x): Optimal cost-to-come

1 *PPR: preferrec

unvisited DB Visited DB

A
B
C NULL
D
E

* Step 5: (start from least C(x) which is C) no other states in unvisif’i‘”

,r.\";“i“LJEL s N
X; ' Edsger W. Dijkstra
° Edge cost 6 ° o
S State C(x) PPR
" S
1 2 2

|

unvisited DB Visited DB

Algorithm steps: R N 4
1. Mark all states as unvisited Weiéerw e
2. M?rk the initial state with a current distance of 0 and the rest states witii™ :

infinity,
3. Forthe current state, analyze all of its unvisited neighbors and calculate C(x).
4. Compare the recently measured C(X) with the assigned one in the database
5. Select the minimum C(X).
6. Mark the current state as visited state.
7. Choose the unvisited node that is marked with the least distance.
8. Repeat step 3.
X State C(x)
° Edge cost 6 °
: :
1 2 2
<

Advantages: \
* little complexity which is almost linear. ‘

r\Edsgerw Dijkstra ,
* Optimal distance , avoid local minima

Lo

Disadvantages:

* Greedy algorithm (search in every node)
* Consume a lot of time.

* non-negative cost edges.

% State C(x)

° Edge cost 6 °

Time and space complexity (BFS)

b = # successors (in our case b= 2)
maximum branching factor

d — depth of the optimal solution

m — maximum depth of the state space
1+b+b2+b3+........ +b™ = O(b™)

space complexity (memory) = should keeps all nodes = time complexiV_\

1 node
b nodes

b? nodes

m tiersy

Comparison

L Dijkst
Criterion Ktra

Complete?
Optimal cost?
Time

Space

Uniform Cost Search (Dijkstra *)

Strategy: expand a
cheapest node first:

@3 e° @
® 4 @11}%5 Joar @ 16
/ ? RS 7 7 A
g @8 g ¢ ¢
g 11© > ©10

d

Cost <

contours

ai.berkeley.edu (Nikita Kitaev)

Uniform Cost Search (UCS) Properties

* What nodes does UCS expand?
* Processes all nodes with cost less than cheapest solution!
* If that solution costs C*and arcs cost at least ¢, then the “effective depth” is
roughly C*& -
* Takes time O(b¢™) (exponential in effective depth)

C*/c “tiers”<

 How much space does the fringe take?
* Has roughly the last tier, so O(b¢%)

* Is it complete?

yes!

* Is it optimal?
* Yes! (Proof next lecture via A*)

Comparison

Depth- Backtracking Dijkstra Uniform-

Criterion _
First gaarch Cost

Complete? Yes! No No Yes Yes!2
Optimal cost? Yes® No No Yes Yes
Time o(b?) o™ o™ ob™) o't/
Space o(b?) O(bm) O(m) om™) o't/

Search Tree

Search
algorithms

Uniformed Informed
search search
strategies strategies

Cost Cost
insensitive sensitive

Planning

* Definition: is the process of determining a sequence of actions and
motions, by looking ahead.

Search techniques :
Breadth First Search (BFS) (uniform edge cost)
Dijkstra’s algorithm (non-uniform edge cost) (surface condition)
Greedy Best First Search (nearest nodes)

Searching Algorithms: Greedy Best First Search

* Initialization: (start from initial State)

(B(tfal;) unvisited DB Visited DB
(0,0) 6 cdoe cont é A
H(t)=25 = (5,20)
1 2 2 6
(10.,0)® ., ©
H(t)=25 (1010)
H(t)=15

State H(n) f(n)

Searching Algorithms: GBFs

 Step 1: (start from least C(x) which is A again)

2 H(t)=15 unvisited DB Visited DB

(0.0)® ME'(%’\OJ -
H(t);25 ~ é&zo)
100)0 , ©
? =25 (10,10)
H(t)=15

State H(n) f(n)

Searching Algorithms: GBFs

 Step 2: (start from least f(n) which is B)
H(t)=15
,, (010)
(0,0) @—==*

O
H(t)=25 \g;'zo)
1 z 2 ?

(10,0) 07
H(t)=25 2 (1 01 O)

H(t)=15

unvisited DB Visited DB

A
B
C
D
E

State H(n) f(n)

Searching Algorithms: GBFs

* Step 3: (start from least f(n) which is C)

(0,1 0)

(O O) o e ® unvisited DB Visited DB

H(t)=25 \;5 ,20) A
-

D

E

10,0)® . ©°?
H(t)=25 2 (10,10)

H(t)=15

State H(n) f(n)

Search Tree

Search
algorithms

Cost Cost
insensitive sensitive

A* Algorithm (for SHAKEY)

e’

|
’
‘ .
, “
| 9
-
il
"' _— 9 .
o R 2. e ‘ —
257 . . L_' g
'e "-‘ » < \

L
e
A CAMER

A
<.\

A Formal Basis for the Heuristic Determination
of Minimum Cost Paths

PETER E. HART, memBER, 1EEE, NILS J. NILSSON, MmeEmBER, 1EEE, AND BERTRAM RAPHAEL

Nils Nilsson Peter Hart Bertram Raphael
USA 1933-2019 USA 1940-2005 USA 1936-

* Admissible heuristic 7
* Heuristic function A(n). A

Int heuristic(initial_state, goal _state){
Manhattan distance on a square grid
return abs (inital.x - goal.x) + abs (inital.y - goal.y)}

". * Published 1968 "

Searching Algorithms: A*

* Initialization: (start from initial State)

(5(?((1)5) unvisited DB Visited DB

o0)e - B

H(t)=25 s (5,20)

1 2) 6
5
(10,000 ., ©

fit)=25 (1 0A O) *C(x): Optimal cost-to-come

H(t)=15 *PPR: preferred '

State H(n) f(n)

f (n) = c(n)+h(n)

Searching Algorithms: A*

 Step 1: (start from least C(x) which is A again)

2 H(t)=15 unvisited DB Visited DB

(0.0)® ME'(%’\OJ -
H(t);25 ~ é&zo)
100)0 , ©
? =25 (10,10)
H(t)=15

State H(n) f(n)

Searching Algorithms: A*

 Step 2: (start from least f(n) which is B)
H(t)=15

,, (010)
(0,0) o e ® e unvisited DB Visited DB

- \36’20) .
1 2) ? B
C
5 D
(10,0) 07 :

=25 ? (1010)

H(t)=15

State H(n) f(n)

Searching Algorithms: A*

* Step 3: (start from least f(n) which is C) Ovg,
H(t)=15 ‘-’Stz%b
. (Oi1 O) Ogbe
(0,0) o e ® unvisited DB Visited DB SOC

; \g : . .
10,0)® ., ©°>?

=25 ? (1010)

H(t)=15

State H(n) f(n)

Searching Algorithms: A* (

* Initialization: (start from initial State)

(5(?(53 unvisited DB Visited DB

o0)e - B

H(t)=2.5 s (5,20)

1 2) 6
5
(10,000 ., ©

fit)=25 (1 0A O) *C(x): Optimal cost-to-come

H(t)=1.5 *PPR: preferred '

State H(n) f(n)

Searching Algorithms: A*

 Step 1: (start from least f(n) which is A again)

2 H({t)=1.5 unvisited DB Visited DB

(0.0)® ME'(%’\OJ -
H(t);2.5 ~ é&zo)
100)0 , ©
? =25 (10,10)
H(t)=1.5

State H(n) f(n)

Searching Algorithms: A*

* Step 2: (start from least f(n) which is D)

2 H({t)=1.5 unvisited DB Visited DB

(0.0) é ___(o10)
vO)® % . (20
H(t)=2.5 6
(10,0) ®—0O
? =25 (10,10)
H(t)=1.5

State H(n) f(n)

Searching Algorithms: A*

 Step 3: (start from least f(n) which is E (C is goal ,stop search))
5 H(t)=1.5

"(0,A0)

unvisited DB Visited DB

(o,o)¢ e ©

H(t)=2.5
(10,0) @—
H(t)=2.5 (1010)

H(t)=1.5
State H(n) f(n)

Planning

Search techniques :
Breadth First Search (BFS) (uniform edge cost)
Dijkstra’s algorithm (non-uniform edge cost) (surface condition)

Greedy Best First Search (nearest node only)
Admissible heuristic (A*) (nearest node & surface condition)

Traversal
all
|

Edge cost facter

equal
| [

BFS Dijkstra GBFS

Ref.

* https://www.redblobgames.com/pathfinding/a-
star/introduction.html

