
Dr. Mustafa Shiple

Planning

Basis of comparison Informed search Uninformed search

Basic knowledge Uses knowledge to find the steps to the
solution.

No use of knowledge

Efficiency Highly efficient as consumes less time and
cost.

Efficiency is mediatory

Cost Low Comparatively high

Performance Finds the solution more quickly. Speed is slower than the
informed search.

Algorithms Heuristic depth-first and A* search Depth-first search, breadth-
first search, and lowest cost
first search

Planning

• Definition: is the process of determining a sequence of actions and
motions, by looking ahead.

Search techniques :
Breadth First Search (BFS)

Breadth-first search (BFS)

• Civil engineer, pioneering computer scientist,
inventor and businessman.

• The functional program-controlled Turing-
complete Z3 (First digital computer in the world).

• He designed Plankalkül, the first high-level
programming language.

• BFS invented in 1945, in his (rejected for 400
Mark) Ph.D. thesis on the Plankalkül
programming language

BFS :

E
D
C
B
A

unvisited DB

BFS :

A

E
D
C
B
A

unvisited DB

BFS :

A

E
D
C
B

unvisited DB

D B

BFS :

A

E
D
C
B

unvisited DB

D B

B E

BFS :

A

E

C
B

unvisited DB

D B

B E

BFS :

A

E

C

unvisited DB

D B

B E E C

Stop
expansion in

next level

BFS :

A

E

C

unvisited DB

D B

B E E C

Early exit

Depth-first search (DFS):

E
D
C
B
A

unvisited DB

DFS :

A

E
D
C
B
A

unvisited DB

DFS :

A

E

C

unvisited DB

D B

B E

E C

DFS :

A

E

C

unvisited DB

D B

B E

E C

Time and space complexity (BFS)

 b = # successors (in our case b= 2)

maximum branching factor

 d – depth of the optimal solution

 m – maximum depth of the state space

1+b+b2+b3+…….. +bd = O(bd) if goal is exist= 1+21+22

1+b+b2+b3+…….. +bm = O(bm) if not exist

b = 10 and d = 10 -- > 3 hours @ processor has 1 million nodes/second !!!
10 terabytes of memory @ each node needs 1 KByte!!!

A

D B

B E E C

space complexity (memory) = should keeps all nodes = time complexity

Time and space complexity (DFS)

 b = # successors (in our case b= 2)

maximum branching factor

 d – depth of the optimal solution

 m – maximum depth of the state space

O(bm) = 2*3=6 = (A,D,B,B,E, C)nodes are explored

A

D B

B E

E C

1+b+b2+b3+…….. +bm = O(bm)

backtracking search uses even less

memory

Time and space complexity (DFS* : backtracking
search)

 b = # successors (in our case b= 2)

maximum branching factor

 d – depth of the optimal solution

 m – maximum depth of the state space

O(m) = 3

A

D

B

E

1+b+b2+b3+…….. +bm = O(bm)

backtracking search uses even less

memory

BFS vs DFS

Planning

• Definition: is the process of determining a sequence of actions and
motions, by looking ahead.

Search techniques :
Breadth First Search (BFS) (uniform edge cost)
Dijkstra’s algorithm (non-uniform edge cost) (surface condition)

Search Tree

Search
algorithms

Uniformed
search

strategies

Cost
insensitive

BSF

DSF

Cost
sensitive

Dijkstra

Informed
search

strategies

E

Searching Algorithms: Dijkstra’s algorithm

• Initialization: (start from initial State)

D
C
B
A

NULL
NULL
NULL
NULL
NULL

E
D
C
B
A

Visited DBunvisited DB

∞
∞
∞
∞
0

NULL
NULL
NULL
NULL

-

State C(x) PPR

*C(x): Optimal cost-to-come
*PPR: preferred previous state

E

Searching Algorithms: Dijkstra’s algorithm

• Step 1: (start from least C(x) which is A again)

D
C
B
A

NULL
NULL
NULL
NULL

A

E
D
C
B

∞
1
∞
6
0

NULL
A

NULL
A
-

State C(x) PPR

*C(x): Optimal cost-to-come
*PPR: preferred previous state

?

?

Visited DBunvisited DB

E

Searching Algorithms: Dijkstra’s algorithm

• Step 2: (start from least C(x) which is D)

D
C
B
A

NULL
D

NULL
NULL

A

E

C
B

2
1
∞
3
0

D
A

NULL
D
-

State C(x) PPR

*C(x): Optimal cost-to-come
*PPR: preferred previous state

?

?

Visited DBunvisited DB

E

Searching Algorithms: Dijkstra’s algorithm

• Step 3: (start from least C(x) which is E)

D
C
B
A

E
D

NULL
NULL

A

C
B

2
1
7
3
0

D
A
E
D
-

State C(x) PPR

*C(x): Optimal cost-to-come
*PPR: preferred previous state

?

Visited DBunvisited DB

?

E

Searching Algorithms: Dijkstra’s algorithm

• Step 4: (start from least C(x) which is B)

D
C
B
A

E
D

NULL
B
A

C

2
1
7
3
0

D
A
E
D
-

State C(x) PPR

*C(x): Optimal cost-to-come
*PPR: preferred previous state

Visited DBunvisited DB

?

E

Searching Algorithms: Dijkstra’s algorithm

D
C
B
A

E
D
C
B
A

2
1
7
3
0

D
A
E
D
-

State C(x) PPR

*C(x): Optimal cost-to-come
*PPR: preferred previous state

Visited DBunvisited DB

• Step 5: (start from least C(x) which is C) no other states in unvisited

E

Searching Algorithms: Dijkstra’s algorithm

Algorithm steps:
1. Mark all states as unvisited
2. Mark the initial state with a current distance of 0 and the rest states with

infinity,
3. For the current state, analyze all of its unvisited neighbors and calculate C(x).
4. Compare the recently measured C(X) with the assigned one in the database
5. Select the minimum C(X).
6. Mark the current state as visited state.
7. Choose the unvisited node that is marked with the least distance.
8. Repeat step 3.

D
C
B
A

2
1
7
3
0

D
A
E
D
-

State C(x) PPR

E

Searching Algorithms: Dijkstra’s algorithm

Advantages:

• little complexity which is almost linear.

• Optimal distance , avoid local minima

Disadvantages:

• Greedy algorithm (search in every node)

• Consume a lot of time.

• non-negative cost edges.

D
C
B
A

2
1
7
3
0

D
A
E
D
-

State C(x) PPR

Time and space complexity (BFS)

 b = # successors (in our case b= 2)

maximum branching factor

 d – depth of the optimal solution

 m – maximum depth of the state space

1+b+b2+b3+…….. +bm = O(bm)

A

D B

B E E C

space complexity (memory) = should keeps all nodes = time complexity

Comparison

Uniform Cost Search (Dijkstra *)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164 11
5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

ai.berkeley.edu (Nikita Kitaev) 32

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?

• Processes all nodes with cost less than cheapest solution!

• If that solution costs C* and arcs cost at least  , then the “effective depth” is
roughly C*/

• Takes time O(bC*/) (exponential in effective depth)

• How much space does the fringe take?

• Has roughly the last tier, so O(bC*/)

• Is it complete?

• Assuming best solution has a finite cost and minimum arc cost is positive,
yes!

• Is it optimal?

• Yes! (Proof next lecture via A*)

b

C*/ “tiers”
c  3

c  2
c  1

33

Comparison

Search Tree

Search
algorithms

Uniformed
search

strategies

Cost
insensitive

BSF

DSF

Cost
sensitive

Dijkstra

UCS

Informed
search

strategies

Planning

• Definition: is the process of determining a sequence of actions and
motions, by looking ahead.

Search techniques :
Breadth First Search (BFS) (uniform edge cost)
Dijkstra’s algorithm (non-uniform edge cost) (surface condition)
Greedy Best First Search (nearest nodes)

15

Searching Algorithms: Greedy Best First Search

• Initialization: (start from initial State)

25
0

15
25

∞
∞
∞
∞
0

NULL
NULL
NULL
NULL

-

H(n) f(n) PPR

*C(x): Optimal cost-to-come
*PPR: preferred previous state

H(t)=25

H(t)=25

H(t)=15

H(t)=15

E
D
C
B
A

State

E
D
C
B

A

Visited DBunvisited DB

f (n) = h(n).

Searching Algorithms: GBFs

• Step 1: (start from least C(x) which is A again)

15
25
0

15
25

∞
1
∞
6
0

NULL
A

NULL
A
-

H(n) f(n) PPR

H(t)=25

H(t)=25

H(t)=15

E
D
C
B
A

State

?

?

E
D
C
B

A

Visited DBunvisited DB
H(t)=15

f (n) = h(n).

Searching Algorithms: GBFs

• Step 2: (start from least f(n) which is B)

H(t)=25

H(t)=25

H(t)=15
?

?

?

E
D
C

B
A

Visited DBunvisited DB

15
25
0

15
25

∞
1

11
6

25

NULL
A
B
A
-

H(n) f(n) PPR

E
D
C
B
A

State

H(t)=15

f (n) = h(n).

Searching Algorithms: GBFs

• Step 3: (start from least f(n) which is C)

H(t)=25

H(t)=25

H(t)=15
?

?

?

E
D

C
B
A

Visited DBunvisited DB

15
25
0

15
25

8
1

11
6

25

NULL
A
B
A
-

H(n) f(n) PPR

E
D
C
B
A

State

f (n) = h(n).

Search Tree

Search
algorithms

Uniformed
search

strategies

Cost
insensitive

BSF

DSF

Cost
sensitive

Dijkstra

UCS

Informed
search

strategies

F(n)=h(n)

GBF

A* Algorithm (for SHAKEY)

• Admissible heuristic

• Heuristic function h(n).

• Published 1968

Int heuristic(initial_state, goal_state){

Manhattan distance on a square grid

return abs (inital.x - goal.x) + abs (inital.y - goal.y)}

15

Searching Algorithms: A*

• Initialization: (start from initial State)

25
0

15
25

∞
∞
∞
∞
25

NULL
NULL
NULL
NULL

-

H(n) f(n) PPR

*C(x): Optimal cost-to-come
*PPR: preferred previous state

H(t)=25

H(t)=25

H(t)=15

H(t)=15

E
D
C
B
A

State

E
D
C
B
A

Visited DBunvisited DB

f (n) = c(n)+h(n)

Searching Algorithms: A*

• Step 1: (start from least C(x) which is A again)

15
25
0

15
25

∞
26
∞
21
25

NULL
A

NULL
A
-

H(n) f(n) PPR

H(t)=25

H(t)=25

H(t)=15

E
D
C
B
A

State

?

?

E
D
C
B

A

Visited DBunvisited DB
H(t)=15

Searching Algorithms: A*

• Step 2: (start from least f(n) which is B)

15
25
0

15
25

23
33
11
21
25

B
B
B
A
-

H(n) f(n) PPR

H(t)=25

H(t)=25

H(t)=15

E
D
C
B
A

State

?
?

?

E
D
C

B
A

Visited DBunvisited DB

H(t)=15

Searching Algorithms: A*

• Step 3: (start from least f(n) which is C)

15
25
0

15
25

23
33
11
21
25

B
B
B
A
-

H(n) f(n) PPR

H(t)=25

H(t)=25

H(t)=15

E
D
C
B
A

State

?
?

?

E
D

C
B
A

Visited DBunvisited DB

H(t)=15

1.5

Searching Algorithms: A* (underestimating heuristic.)

• Initialization: (start from initial State)

2.5
0

1.5
2.5

∞
∞
∞
∞
2.5

NULL
NULL
NULL
NULL

-

H(n) f(n) PPR

*C(x): Optimal cost-to-come
*PPR: preferred previous state

H(t)=2.5

H(t)=2.5

H(t)=1.5

H(t)=1.5

E
D
C
B
A

State

E
D
C
B
A

Visited DBunvisited DB

Searching Algorithms: A*

• Step 1: (start from least f(n) which is A again)

H(t)=2.5

H(t)=2.5

H(t)=1.5

?

?

1.5
2.5
0

1.5
2.5

∞
3.5
∞
7.5
2.5

NULL
A

NULL
A
-

H(n) f(n) PPR

E
D
C
B
A

State

E
D
C
B

A

Visited DBunvisited DB
H(t)=1.5

Searching Algorithms: A*

• Step 2: (start from least f(n) which is D)

H(t)=2.5

H(t)=2.5

H(t)=1.5

?

?

1.5
2.5
0

1.5
2.5

3.5
3.5
∞
4.5
2.5

D
A

NULL
D
-

H(n) f(n) PPR

E
D
C
B
A

State

E

C
B

D

A

Visited DBunvisited DB
H(t)=1.5

Searching Algorithms: A*

• Step 3: (start from least f(n) which is E (C is goal ,stop search))

H(t)=2.5

H(t)=2.5

H(t)=1.5

?

?

1.5
2.5
0

1.5
2.5

3.5
3.5
7
x

2.5

D
A
E
E
-

H(n) f(n) PPR

E
D
C
B
A

State

C
B

E
D

A

Visited DBunvisited DB
H(t)=1.5

Planning

Search techniques :
Breadth First Search (BFS) (uniform edge cost)
Dijkstra’s algorithm (non-uniform edge cost) (surface condition)
Greedy Best First Search (nearest node only)
Admissible heuristic (A*) (nearest node & surface condition)

Traversal
all

Edge cost
equal

BFS Dijkstra

faster

GBFS A*

Ref.

• https://www.redblobgames.com/pathfinding/a-
star/introduction.html

