
Chapter 2: Operating-System

Services

Edited by : Dr. Mustafa Shiple

Operating system concepts / Abraham Silberschatz,

2.2

Outline

▪ System Calls

▪ System Services

▪ Linkers and Loaders

▪ Why Applications are Operating System Specific

▪ Design and Implementation

▪ Operating System Structure

▪ Building and Booting an Operating System

▪ Operating System Debugging

2.3

Objectives

▪ Identify services provided by an operating system

▪ Illustrate how system calls are used to provide operating

system services

▪ Compare and contrast monolithic, layered, microkernel,

modular, and hybrid strategies for designing operating

systems

▪ Illustrate the process for booting an operating system

▪ Apply tools for monitoring operating system performance

▪ Design and implement kernel modules for interacting with a

Linux kernel

Operating System Services

2.5

A View of Operating System Services

▪ One set of operating-system services provides functions:

• User interface - Almost all operating systems have a user

interface (UI).

 Varies between Command-Line (CLI), Graphics User

Interface (GUI), touch-screen, Batch

• Program execution - The system must be able to load a program

into memory and to run that program, end execution, either

normally or abnormally (indicating error)

• I/O operations - A running program may require I/O, which may

involve a file or an I/O device

2.6

A View of Operating System Services

▪ One set of operating-system services provides functions that are

helpful to the user:

• File-system manipulation - The file system is of particular

interest. Programs need to read and write files and directories,

create and delete them, search them, list file Information,

permission management.

• Communications – Processes may exchange information, on the

same computer or between different computers over a network

 Communications may be via shared memory or through

message passing (packets moved by the OS)

2.7

Operating System Services (Cont.)

• Error detection – OS needs to be constantly aware of possible

errors

 May occur in the CPU, memory hardware, I/O devices, and

user program

 For each type of error, OS should take the appropriate action

to ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system

2.8

Operating System Services (Cont.)

▪ Another set of OS functions exists for ensuring the efficient operation
of the system itself via resource sharing

• Resource allocation - When multiple users or multiple jobs
running concurrently, resources must be allocated to each of them

 Many types of resources - CPU cycles, main memory, file
storage, I/O devices.

• Logging - To keep track of which users use how much and what
kinds of computer resources

• Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use
of that information, concurrent processes should not interfere with
each other

 Protection involves ensuring that all access to system
resources is controlled (segmentation fault, parity check , stack
overflow)

 Security of the system from outsiders requires user
authentication, extends to defending external I/O devices from
invalid access attempts

Systems calls

2.10

System Calls

▪ System call: Programming interface between user program and the

services provided by the OS.

▪ Typically written in a high-level language (C or C++)

▪ Mostly accessed by programs via a high-level Application Programming
Interface (API) rather than direct system call use (portability)

2.11

System Call Implementation
▪ Typically, a number is associated with each system call

• System-call interface maintains a table indexed according to these numbers

• OS interface hidden from programmer by API (processor switches between

two modes and update Mode bit).

invokes
the intended system

3. return
values

2. managed by the
RTE

1. programmer by
API

2.12

System Call Parameter Passing

File name
Address
buffer size

▪ Three general methods used to pass parameters to the OS

• Simplest: pass the parameters in registers

 In some cases, may be more parameters than registers

• Parameters stored in a block, or table, in memory, and address of block
passed as a parameter in a register

 This approach taken by Linux and Solaris

• Parameters placed, or pushed, onto the stack by the program and popped
off the stack by the operating system

• Block and stack methods do not limit the number or length of parameters
being passed

2.13

Types of System Calls

▪ Process control (System calls are used for the creation and
management of new processes.)

• Create process, terminate process.

• End (normal exit), abort (abnormal exit).

• Load, execute

• Debugger for determining bugs, single step execution

Dump memory

Error msg generated

Log file(dump memory)

Debugger

Next process (interpreter)

2.14

Types of System Calls

▪ Process control (System calls are used for the creation and
management of new processes.)

• Create process, terminate process.

• End (normal exit), abort (abnormal exit).

• Load, execute

• Get process attributes, set process attributes (Max response time)

• Wait for time Wait event, signal event

• Allocate and free memory

• Locks for managing access to shared data between processes

Process 1

Time wait

Time event

Resume Process 1

2.15

Types of System Calls

▪ Process control (System calls are used for the creation and
management of new processes.)

• Locks for managing access to shared data between processes

Process 1

Shared Memory

acquire lock() release lock()

2.16

System Call Implementation (summary)

2. Kernel part

 Executes in system mode

 Implements the system service

 May cause blocking the caller (forcing it to wait)

 After completion reports either the success or failure of the call

then switch to User mode)

invokes
the intended system

3. return
values

2. managed by the
RTE

1. programmer by
API

1. Higher language interface (a part of a system library)

• Executes in user mode
• Implemented to accept a standard procedure call

• Wait for Kernel return.

2.17

▪ File management

• create file, delete file

• open, close file

• read, write

• get and set file attributes(file name, file type, protection
codes, accounting information, etc)

▪ Device management

• request device, release device

• read, write, reposition

• get device attributes, set device attributes

• logically attach or detach devices

Types of System Calls (Cont.)

provide API to
perform those
operations
using code

If any device is unavailable, the process will have to wait until
sufficient resources are available.

2.18

Types of System Calls (Cont.)

▪ Information maintenance

• get time or date, set time or date

• get system data, set system data

• Info about memory (occupied, free).

• get and set process, file, or device attributes

• “Strace”, (Linux) systems, lists each system call as it is executed.

• “Single step”, (CPU) , for debugging the code.

2.19

Types of System Calls (Cont.)

▪ Communications

▪ Two common models of inter-process
communication:

• 1- Message Passing Model:

 Exchanging smaller amounts of
data, because no conflicts need to
avoid

Process Process

Direct

Mailbox

indirect

Client (source of comm)

server (receiving daemon,)

get host_id()
Get process_id()

Open connection () Open connection ()
read message()

write message()

2.20

Types of System Calls (Communications)

▪ Two common models of inter-process communication:

• 2-Shared-memory model create and gain access to memory regions

 Two or more processes agree to remove this

 Not under the operating system’s control

 Processes check and examine faults (write simultaneously).

 Allows maximum speed and convenience of communication

Client (source of comm)

server (receiving daemon,)

get host_id()
Get process_id()

shared memory create() shared memory attach()
read message()

write message()

Memory

Memory

2.21

Examples of Windows and Unix System Calls

2.22

Standard C Library Example

▪ C program invoking printf() library call, which calls write() system call

2.23

Why Applications are Operating System Specific

▪ Apps compiled on one system usually not executable on other

operating systems

▪ Each operating system provides its own unique system calls

• Own file formats, etc.

▪ Apps can be multi-operating system

• Written in interpreted language like Python, Ruby, and interpreter

available on multiple operating systems

• App written in language that includes a VM containing the running

app (like Java)

• Use standard language (like C), compile separately on each

operating system to run on each

▪ Application Binary Interface (ABI) is architecture equivalent of API,

defines how different components of binary code can interface for a

given operating system on a given architecture, CPU, etc.

2.24

Design and Implementation

▪ Design and Implementation of OS is not “solvable”, but some

approaches have proven successful

▪ Internal structure of different Operating Systems can vary widely

▪ Start the design by defining goals and specifications

▪ Affected by choice of hardware, type of system

▪ User goals and System goals

• User goals – operating system should be convenient to use,

easy to learn, reliable, safe, and fast

• System goals – operating system should be easy to design,

implement, and maintain, as well as flexible, reliable, error-free,

and efficient

2.25

Policy and Mechanism

▪ Policy: What needs to be done?

• Example: Interrupt after every 100 seconds

▪ Mechanism: How to do something?

• Example: timer

▪ Important principle: separate policy from mechanism

▪ The separation of policy from mechanism is a very important principle, it

allows maximum flexibility if policy decisions are to be changed later.

2.26

Implementation

▪ Much variation

• Early OSes in assembly language

• Then system programming languages like Algol, PL/1

• Now C, C++

▪ Actually usually a mix of languages

• Lowest levels in assembly

• Main body in C

• Systems programs in C, C++, scripting languages like PERL,

Python, shell scripts

▪ More high-level language easier to port to other hardware

• But slower

▪ Emulation can allow an OS to run on non-native hardware

2.27

Operating System Structure

▪ General-purpose OS is very large program

▪ Various ways to structure ones

• Simple structure – MS-DOS

• More complex – UNIX

• Layered – an abstraction

• Microkernel – Mach

2.28

Monolithic Structure – Original UNIX

▪ Example: Unix, Linux, Microsoft Windows (95, 98, Me), Solaris, DOS, etc.

▪ The UNIX OS consists of two separable parts

• Systems programs

• The kernel

 Consists of everything below the system-call interface and above the

physical hardware

 Provides the file system, CPU scheduling, memory management, etc

S
y
s
te

m
s

p
ro

g
ra

m
s

2.29

Monolithic Kernel

▪ Advantages:

• Simple and easy to implement structure.

• Faster execution due to direct access to all the services

▪ Disadvantages:

• Updating (adding new features or remove obsolete features) is
very hard . All the code needs to be rewritten and recompiled to
add or remove any feature.

• If any service fails in the monolithic kernel, it leads to the failure of
the entire system.

2.30

Microkernels

▪ Moves as much from the kernel into user space

▪ Mach is an example of microkernel (Example: Symbian, L4Linux, Mac OS X)

• Mac OS X kernel (Darwin) partly based on Mach

▪ Communication takes place between user modules using message passing

▪ Benefits: extendable More reliable, More secure

▪ Detriments: Performance overhead of user space to kernel space

communication (speed)

2.31

2.32

Linux System Structure

▪ Monolithic plus modular design (modular design)
▪ Their speed and efficiency high

2.33

Layered Approach

▪ The operating system is divided into a

number of layers (levels), each built

on top of lower layers. The bottom

layer (layer 0), is the hardware; the

highest (layer N) is the user interface.

▪ With modularity, layers are selected

such that each uses functions

(operations) and services of only

lower-level layers

▪ Function calls overheads

2.34

Modules

▪ Many modern operating systems implement loadable kernel

modules (LKMs)

• Uses object-oriented approach

• Each core component is separate

• Each talks to the others over known interfaces

• Each is loadable as needed within the kernel

▪ Overall, similar to layers but with more flexible

• Linux, Solaris, etc.

2.35

Hybrid Systems

▪ Most modern operating systems are not one pure model

• Hybrid combines multiple approaches to address performance,

security, usability needs

• Linux and Solaris kernels in kernel address space, so monolithic,

plus modular for dynamic loading of functionality

• Windows mostly monolithic, plus microkernel for different

subsystem personalities

▪ Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming

environment

• Below is kernel consisting of Mach microkernel and BSD Unix

parts, plus I/O kit and dynamically loadable modules (called

kernel extensions)

2.36

End of Chapter 2

	Slide 1: Chapter 2: Operating-System Services
	Slide 2: Outline
	Slide 3: Objectives
	Slide 4: Operating System Services
	Slide 5: A View of Operating System Services
	Slide 6: A View of Operating System Services
	Slide 7: Operating System Services (Cont.)
	Slide 8: Operating System Services (Cont.)
	Slide 9: Systems calls
	Slide 10: System Calls
	Slide 11: System Call Implementation
	Slide 12: System Call Parameter Passing
	Slide 13: Types of System Calls
	Slide 14: Types of System Calls
	Slide 15: Types of System Calls
	Slide 16: System Call Implementation (summary)
	Slide 17: Types of System Calls (Cont.)
	Slide 18: Types of System Calls (Cont.)
	Slide 19: Types of System Calls (Cont.)
	Slide 20: Types of System Calls (Communications)
	Slide 21: Examples of Windows and Unix System Calls
	Slide 22: Standard C Library Example
	Slide 23: Why Applications are Operating System Specific
	Slide 24: Design and Implementation
	Slide 25: Policy and Mechanism
	Slide 26: Implementation
	Slide 27: Operating System Structure
	Slide 28: Monolithic Structure – Original UNIX
	Slide 29: Monolithic Kernel
	Slide 30: Microkernels
	Slide 31
	Slide 32: Linux System Structure
	Slide 33: Layered Approach
	Slide 34: Modules
	Slide 35: Hybrid Systems
	Slide 36
	Slide 37: End of Chapter 2

