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Motivation
• Visualization

• Clustering
• One way to summarize a complex real-valued data point with a single 

categorical variable

• Dimensionality reduction
• Another way to simplify complex high-dimensional data

• Summarize data with a lower dimensional real valued vector



When we use traditional techniques,

• 1. Not easy to extract useful information from the multivariate data

• 1) Many bivariate plots are needed

• 2) Bivariate plots, however, mainly represent correlations between variables (not samples).



Motivation

• Visualization

• Clustering
• One way to summarize a complex real-valued data point with a single 

categorical variable

• Dimensionality reduction
• Another way to simplify complex high-dimensional data

• Summarize data with a lower dimensional real valued vector

• Given data points in d dimensions

• Convert them to data points in r<d dimensions

• With minimal loss of information
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Data Compression
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Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector                   )
onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find    vectors 
onto which to project the data, so as to minimize the projection error.





Covariance

• Variance and Covariance:
• Measure of the “spread” of a set of points around their center of mass(mean)

• Variance:
• Measure of the deviation from the mean for points in one dimension

• Covariance:
• Measure of how much each of the dimensions vary from the mean with 

respect to each other

• Covariance is measured between two dimensions 
• Covariance sees if there is a relation between two dimensions 
• Covariance between one dimension is the variance



Positive: Both dimensions increase or decrease together Negative: While one increase the other decrease



Standard Deviation
The  average distance from the mean of the data set to a point

MEAN:

Example:

Measurement 1:  0,8,12,20
Measurement 2:  8,9,11,12

M1 M2

Mean 10 Mean 10

SD 8.33 SD 1.83



Variance

Example:

Measurement 1:  0,8,12,20
Measurement 2:  8,9,11,12

M1 M2

Mean 10 Mean 10

SD 8.33 SD 1.83

Var 69.33 Var 3.33



Transformation
Can we intuitively see that in a picture?

Good Better



Covariance
Standard Deviation and Variance are 1-dimensional

How much do the dimensions vary from the mean with respect to each other ?

Covariance measures between 2 dimensions

We easily see, if X=Y we end up with variance



Covariance Matrix
Let   X be a random vector. 

Then the covariance matrix of  X, denoted by Cov(X), is   

The diagonals of  Cov(X) are                                  . 

In matrix notation, 

  

The covariance matrix is symmetric



Eigenvector and Eigenvalue

Ax = λx
A: Square Matirx
λ: Eigenvector or characteristic vector
X: Eigenvalue or characteristic value

• The zero vector can not be an eigenvector
• The value zero can be eigenvalue 



Example 1: Find the eigenvalues of

two eigenvalues: −1, − 2  

Note: The roots of the characteristic equation can be repeated. That is, λ1 = λ2 =…= λk. 
If that happens, the eigenvalue is said to be of multiplicity k.

Example 2: Find the eigenvalues of

λ = 2 is an eigenvector of multiplicity 3.
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