Principal Component Analysis (PCA)

Dr. M. Shiple

Motivation

- Visualization
- Clustering
 - One way to summarize a complex real-valued data point with a single categorical variable
- Dimensionality reduction
 - Another way to simplify complex high-dimensional data
 - Summarize data with a lower dimensional real valued vector

Traditional way of handling multivariate data set

- Bivariate Plots of Elemental Properties

When we use traditional techniques,

- 1. Not easy to extract useful information from the multivariate data •
- 1) Many bivariate plots are needed •
- 2) Bivariate plots, however, mainly represent correlations between variables (not samples).

Motivation

- Visualization
- Clustering
 - One way to summarize a complex real-valued data point with a single categorical variable
- Dimensionality reduction
 - Another way to simplify complex high-dimensional data
 - Summarize data with a lower dimensional real valued vector

- Given data points in *d* dimensions
- Convert them to data points in *r<d* dimensions
- With minimal loss of information

Data Compression

Reduce data from 2D to 1D

Data Compression

Data Compression

Reduce data from 3D to 2D

1- normalization

2- normalize mean

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find kvectors $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

Principal Component Analysis

Goal: Find *r*-dim projection that best preserves variance

- 1. Compute mean vector μ and covariance matrix Σ of original points
- 2. Compute eigenvectors and eigenvalues of Σ
- 3. Select top r eigenvectors
- 4. Project points onto subspace spanned by them:

$$y = A(x - \mu)$$

where y is the new point, x is the old one, and the rows of A are the eigenvectors

Covariance

- Variance and Covariance:
 - Measure of the "spread" of a set of points around their center of mass(mean)
- Variance:
 - Measure of the deviation from the mean for points in one dimension
- Covariance:
 - Measure of how much each of the dimensions vary from the mean with respect to each other
 - Covariance is measured between two dimensions
 - Covariance sees if there is a relation between two dimensions
 - Covariance between one dimension is the variance

Positive: Both dimensions increase or decrease together

Negative: While one increase the other decrease

Standard Deviation

The average distance from the mean of the data set to a point

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{(n-1)}}$$

MEAN:
$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Example:

Measurement 1: 0,8,12,20 Measurement 2: 8,9,11,12

M1	M2
Mean 10	Mean 10
SD 8.33	SD 1.83

Variance

Variance is another measure of the spread of data in a data set.

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{(n-1)}$$

Example:

Measurement 1: 0,8,12,20 Measurement 2: 8,9,11,12

M1	M2
Mean 10	Mean 10
SD 8.33	SD 1.83
Var 69.33	Var 3.33

. . .

. . .

Transformation

Can we intuitively see that in a picture?

Good

Covariance

Standard Deviation and Variance are 1-dimensional

How much do the dimensions vary from the mean with respect to each other ?

Covariance measures between 2 dimensions

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)}$$

We easily see, if X=Y we end up with variance

Covariance Matrix

Let X be a random vector.

Then the covariance matrix of X, denoted by Cov(X), is $\{Cov(X_i, X_j)\}\$ $Cov(X_i, X_i) = Var[X_i]$

The diagonals of Cov(X) are

In matrix notation,

$$\mathbf{Cov}(\mathbf{X}) = \begin{pmatrix} Var[X_1] & \cdots & Cov(X_1, X_n) \\ \vdots & & \vdots \\ Cov(X_n, X_1) & \cdots & Var[X_n] \end{pmatrix}.$$

The covariance matrix is symmetric

Eigenvector and Eigenvalue

 $Ax = \lambda x$

A: Square Matirx
λ: Eigenvector or characteristic vector
X: Eigenvalue or characteristic value

- The zero vector can not be an eigenvector
- The value zero can be eigenvalue

Eigenvector and Eigenvalue

two eigenvalues: -1, -2

Note: The roots of the characteristic equation can be repeated. That is, $\lambda_1 = \lambda_2 = ... = \lambda_k$. If that happens, the eigenvalue is said to be of multiplicity k.

Example 2: Find the eigenvalues of

$$\begin{vmatrix} A = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \\ \begin{vmatrix} \lambda I - A \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -1 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^3 = 0 \\ \lambda = 2 \text{ is an eigenvector of multiplicity 3.} \end{aligned}$$

