Principal Component Analysis
 (PCA)
 Dr. M. Shiple

Motivation

- Visualization
- Clustering
- One way to summarize a complex real-valued data point with a single categorical variable
- Dimensionality reduction
- Another way to simplify complex high-dimensional data
- Summarize data with a lower dimensional real valued vector

Traditional way of handling multivariate data set

- Bivariate Plots of Elemental Properties

Some relationships can be found from the bivariate plots of raw data

Ex. Wiedemann-Franz Law

LL Kpərdosd of \downarrow Kprodosd mos」

When we use traditional techniques,

- 1. Not easy to extract useful information from the multivariate data
- 1) Many bivariate plots are needed
- 2) Bivariate plots, however, mainly represent correlations between variables (not samples).

Motivation

- Visualization
- Clustering
- One way to summarize a complex real-valued data point with a single categorical variable
- Dimensionality reduction
- Another way to simplify complex high-dimensional data
- Summarize data with a lower dimensional real valued vector
- Given data points in d dimensions
- Convert them to data points in $r<d$ dimensions
- With minimal loss of information

Data Compression

Data Compression

Data Compression

Reduce data from 3D to 2D

1- normalization
2- normalize mean

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^{n}$) onto which to project the data so as to minimize the projection error. Reduce from n -dimension to k -dimension: Find k vectors $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

Principal Component Analysis

Goal: Find r-dim projection that best preserves variance

1. Compute mean vector μ and covariance matrix Σ of original points
2. Compute eigenvectors and eigenvalues of Σ
3. Select top r eigenvectors
4. Project points onto subspace spanned by them:

$$
y=A(x-\mu)
$$

where y is the new point, x is the old one, and the rows of A are the eigenvectors

Covariance

- Variance and Covariance:
- Measure of the "spread" of a set of points around their center of mass(mean)
- Variance:
- Measure of the deviation from the mean for points in one dimension
- Covariance:
- Measure of how much each of the dimensions vary from the mean with respect to each other
- Covariance is measured between two dimensions
- Covariance sees if there is a relation between two dimensions
- Covariance between one dimension is the variance

positive covariance

negative covariance

Positive: Both dimensions increase or decrease together

Standard Deviation

The average distance from the mean of the data set to a point

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{(n-1)}} \quad \text { MEAN: } \quad \bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

Example:

Measurement 1: 0,8,12,20
Measurement 2: 8,9,11,12

M1	M2
Mean 10	Mean 10
SD 8.33	SD 1.83

Variance

Variance is another measure of the spread of data in a data set.

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{(n-1)}
$$

Example:

Measurement 1: 0,8,12,20
Measurement 2: 8,9,11,12

M1	M2
Mean 10	Mean 10
SD 8.33	SD 1.83
Var 69.33	Var 3.33

Transformation

Can we intuitively see that in a picture?

Good

Better

Covariance

Standard Deviation and Variance are 1-dimensional
How much do the dimensions vary from the mean with respect to each other ?
Covariance measures between 2 dimensions

$$
\operatorname{cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{(n-1)}
$$

We easily see, if $X=Y$ we end up with variance

Covariance Matrix

Let X be a random vector.
Then the covariance matrix of X, denoted by $\operatorname{Cov}(X)$, is
The diagonals of $\operatorname{Cov}(X)$ are

$$
\operatorname{Cov}\left(X_{i}, X_{i}\right)=\operatorname{Var}\left[X_{i}\right]
$$

In matrix notation,

$$
\operatorname{Cov}(\mathbf{X})=\left(\begin{array}{ccc}
\operatorname{Var}\left[X_{1}\right] & \cdots & \operatorname{Cov}\left(X_{1}, X_{n}\right) \\
\vdots & & \vdots \\
\operatorname{Cov}\left(X_{n}, X_{1}\right) & \cdots & \operatorname{Var}\left[X_{n}\right]
\end{array}\right) .
$$

The covariance matrix is symmetric

Eigenvector and Eigenvalue

$$
A x=\lambda x
$$

A: Square Matirx
 λ : Eigenvector or characteristic vector
 X: Eigenvalue or characteristic value

- The zero vector can not be an eigenvector
- The value zero can be eigenvalue

Eigenvector and Eigenvalue

Example 1: Find the eigenvalues of

$$
A=\left[\begin{array}{cc}
2 & -12 \\
1 & -5
\end{array}\right]
$$

$$
|\lambda I-A|=\left|\begin{array}{cc}
\lambda-2 & 12 \\
-1 & \lambda+5
\end{array}\right|=(\lambda-2)(\lambda+5)+12
$$

$$
=\lambda^{2}+3 \lambda+2=(\lambda+1)(\lambda+2)
$$

two eigenvalues: $-1,-2$
Note: The roots of the characteristic equation can be repeated. That is, $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{k}$. If that happens, the eigenvalue is said to be of multiplicity k .
Example 2: Find the eigenvalues of

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

$$
|\lambda I-A|=\left|\begin{array}{ccc}
\lambda-2 & -1 & 0 \\
0 & \lambda-2 & 0 \\
0 & 0 & \lambda-2
\end{array}\right|=(\lambda-2)^{3}=0
$$

$\lambda=2$ is an eigenvector of multiplicity 3.

PCA Projection

- PCA Line - Rotating Line

- Projection Points

