Principal Component Analysis
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Motivation

e Visualization

* Clustering
* One way to summarize a complex real-valued data point with a single
categorical variable
* Dimensionality reduction
* Another way to simplify complex high-dimensional data
* Summarize data with a lower dimensional real valued vector



Traditional way of handling multivariate data set
- Bivariate Plots of Elemental Properties
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Motivation

* Visualization

* Clustering
* One way to summarize a complex real-valued data point with a single
categorical variable
* Dimensionality reduction
* Another way to simplify complex high-dimensional data
 Summarize data with a lower dimensional real valued vector

* Given data points in d dimensions
* Convert them to data points in r<d dimensions
* With minimal loss of information
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Data Compression
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Data Compression
<1

N

— X Reduce data from
5 x X 2D to 1D
5 e +(D ()
g (2) @)
5 X
oem (™) — (m)

KKK XK AKX XX—

<1




Data Compression

1- normalization
2- normalize mean

Reduce data from 3D to 2D




Principal Component Analysis (PCA) problem formulation
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Reduce from 2-dimension to 1-dimension: Find a direction (a vector (1) ¢ R™)
onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find kvectors w1 4(2) ... (k)
onto which to project the data, so as to minimize the projection error.



Principal Component Analysis

Goal: Find r-dim projection that best preserves variance

1. Compute mean vector u and covariance matrix >J
of original points

2. Compute eigenvectors and eigenvalues of X
3. Select top r eigenvectors

4. Project points onto subspace spanned by them:

y=A(z —p)

where y is the new point, x is the old one,
and the rows of A are the eigenvectors



Covariance

* Variance and Covariance:
 Measure of the “spread” of a set of points around their center of mass(mean)

* Variance:
* Measure of the deviation from the mean for points in one dimension

e Covariance:

* Measure of how much each of the dimensions vary from the mean with
respect to each other

 Covariance is measured between two dimensions
 Covariance sees if there is a relation between two dimensions
 Covariance between one dimension is the variance




positive covariance negative covariance
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Positive: Both dimensions increase or decrease together Negative: While one increase the other decrease



Standard Deviation

The average distance from the mean of the data set to a point
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Example:
M1 M2
Measurement 1: 0,8,12,20
Measurement 2: 8,9,11,12 Mean 10 Mean 10

SD 8.33 SD 1.83




Variance

Variance 1s another measure of the spread of data in a data set.

2 _ Z?:l(X%' - X)z
(n—1)

Example:
M1 M2
Measurement 1: 0,8,12,20
Measurement 2: 8,9,11,12 Mean 10 Mean 10
SD 8.33 SD 1.83

Var 69.33 Var 3.33




Transformation

Can we intuitively see that in a picture?
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Covariance

Standard Deviation and Variance are 1-dimensional
How much do the dimensions vary from the mean with respect to each other ?

Covariance measures between 2 dimensions

22;1()(1 - X)(V; -Y)
(n—1)

cov(X,Y) =

We easily see, if X=Y we end up with variance



Covariance Matrix

Let X be a random vector.

Then the covariance matrix of X, denoted by Cov(X), is {Cov(X;, X;)}
) Cov(X;, X;) = Var[X|]
The diagonals of Cov(X) are
In matrix notation,
Vﬂ.?‘[}fl] o Cov( X, Xa)

Cov(X) = : :
Cov( Xy, Xy) -+~ Var[X,]

The covariance matrix is symmetric



Eigenvector and Eigenvalue

AX = AX

A: Square Matirx
A: Eigenvector or characteristic vector
X: Eigenvalue or characteristic value

* The zero vector can not be an eigenvector
 The value zero can be eigenvalue



Eigenvector and Eigenvalue

Example 1: Find the eigenvalues of {2 —12}
|1 -5
A-2
Al - A= =(1-2)(1+5)+12
-1 A+5

=1 +31+2=(1+1)(1+2)

two eigenvalues: -1, — 2

Note: The roots of the characteristic equation can be repeated. That is, A; = A, =...= A,.
If that happens, the eigenvalue is said to be of multiplicity k.

2 1 0
A=|0 2 0
00 2

Example 2: Find the eigenvalues of

Al-A= 0 A1-2 0 |=(1-2)°=0

A = 2 is an eigenvector of multiplicity 3.



PCA Projection
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