Unsupervised Learning

Dr. Shiple

INTRODUCTION-What is clustering?

 Clustering is the classification of objects into different groups, or more precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait - often according to some defined distance measure.

Types of clustering:

- **1.** <u>Hierarchical algorithms</u>: these find successive clusters using previously established clusters.
 - 1. <u>Agglomerative ("bottom-up")</u>: Agglomerative algorithms begin with each element as a separate cluster and merge them into successively larger clusters.
 - 2. <u>Divisive ("top-down")</u>: Divisive algorithms begin with the whole set and proceed to divide it into successively smaller clusters.
- 2. <u>Partitional clustering</u>: Partitional algorithms determine all clusters at once. They include:

K-means and derivatives

- Fuzzy *c*-means clustering
- QT clustering algorithm

Common Distance measures:

 Distance measure will determine how the similarity of two elements is calculated and it will influence the shape of the clusters.

They include:

1. The Euclidean distance (also called 2-norm distance) is given by:

$$d(x, y) = \sum_{i=1}^{r} |x_i - y_i|$$

2. The <u>Manhattan distance</u> (also called taxicab norm or 1-norm) is given by:

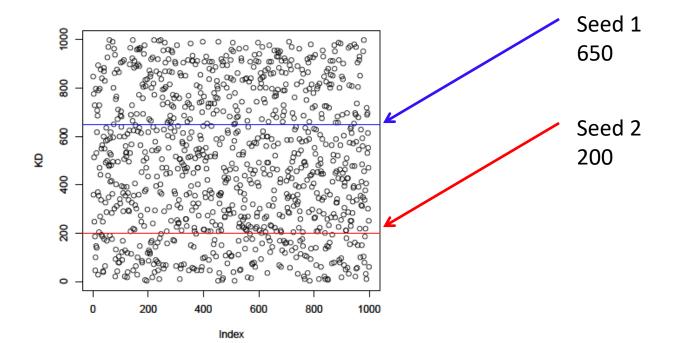
$$d(x, y) = \sqrt[2]{\sum_{i=1}^{p} |x_i - y_i|^2}$$

- What is clustering?
- Why would we want to cluster?
- How would you determine clusters?
- How can you do this efficiently?

- Strengths
 - Simple iterative method
 - User provides "K"
- Weaknesses
 - Often too simple \rightarrow bad results
 - Difficult to guess the correct "K"

Basic Algorithm:

- Step 0: select K
- Step 1: randomly select initial cluster seeds

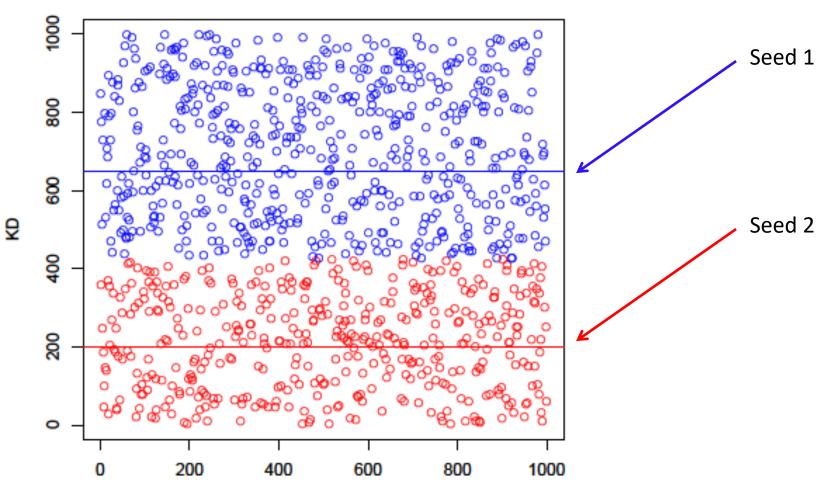


- An initial cluster seed represents the "mean value" of its cluster.
- In the preceding figure:
 - Cluster seed 1 = 650
 - Cluster seed 2 = 200

- Step 2: calculate distance from each object to each cluster seed.
- What type of distance should we use?

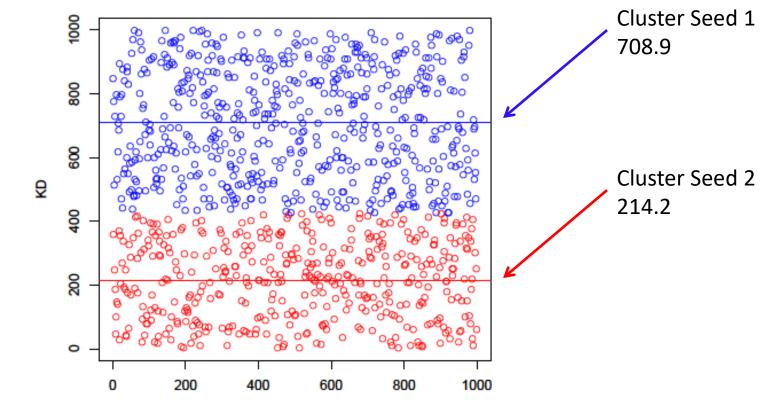
– Squared Euclidean distance

 Step 3: Assign each object to the closest cluster



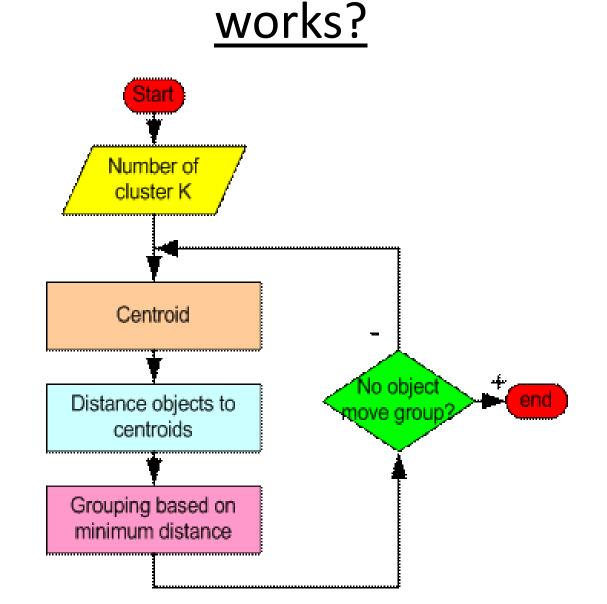
Index

• Step 4: Compute the new centroid for each cluster



- Iterate:
 - Calculate distance from objects to cluster centroids.
 - Assign objects to closest cluster
 - Recalculate new centroids
- Stop based on convergence criteria
 - No change in clusters
 - Max iterations

How the K-Mean Clustering algorithm



A Simple example showing the implementation of					
<u>k-means algorithm</u>					
	(using K=2)				
Individual Variable 1 Variable 2					
1	1.0				
2	1.5	2.0			
3	4.0				
4	5.0	7.0			
5	3.5	5.0			
6	4.5	5.0			
7	3.5	4.5			

<u>Step 1:</u>

<u>Initialization</u>: Randomly we choose following two centroids (k=2) for two clusters.

In this case the 2 centroid are: m1=(1.0,1.0) and m2=(5.0,7.0).

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

	Individual	Mean Vector
Group 1	1	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

<u>Step 2:</u>

- Thus, we obtain two clusters containing: {1,2,3} and {4,5,6,7}.
- Their new centroids are:

$$m_1 = (\frac{1}{3}(1.0 + 1.5 + 3.0), \frac{1}{3}(1.0 + 2.0 + 4.0)) = (1.83, 2.33)$$
$$m_2 = (\frac{1}{4}(5.0 + 3.5 + 4.5 + 3.5), \frac{1}{4}(7.0 + 5.0 + 5.0 + 4.5))$$
$$= (4.12, 5.38)$$

Individual	Centrold 1 Centrold 2		
1	0	7.21	
2 (1.5, 2.0)	1.12	6.10	
3	3.61	3.61	
4	7.21	0	
5	4.72	2.5	
6	5.31	2.06	
7	4.30	2.92	

$$d(m_1, 2) = \sqrt{|1.0 - 1.5|^2 + |1.0 - 2.0|^2} = 1.12$$

$$d(m_2, 2) = \sqrt{|5.0 - 1.5|^2 + |7.0 - 2.0|^2} = 6.10$$

<u>Step 3:</u>

- Now using these centroids we compute the Euclidean distance of each object, as shown in table.
- Therefore, the new clusters are: {1,2} and {3,4,5,6,7}
- Next centroids are: m1=(1.25,1.5) and m2 = (3.9,5.1)

Individual	Centroid 1	Centroid 2
1	1.57	5.38
2	0.47	4.28
3	2.04	1.78
4	5.64	1.84
5	3.15	0.73
6	3.78	0.54
7	2.74	1.08

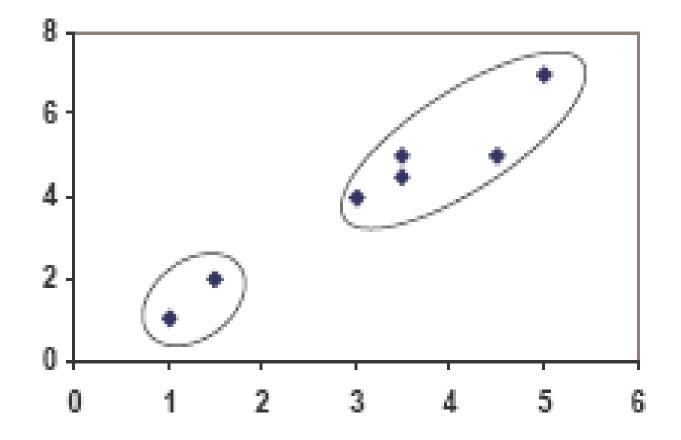
• <u>Step 4</u>:

The clusters obtained are: {1,2} and {3,4,5,6,7}

- Therefore, there is no change in the cluster.
- Thus, the algorithm comes to a halt here and final result consist of 2 clusters {1,2} and {3,4,5,6,7}.

Individual	Centroid 1	Centroid 2
1	0.56	5.02
2	0.56	3.92
3	3.05	1.42
4	6.66	2.20
5	4.16	0.41
6	4.78	0.61
7	3.75	0.72

<u>PLOT</u>



(with K=3)

Individual	m ₁ = 1	m ₂ = 2	m ₃ = 3	cluster		
1	0	1.11	3.61	1		
2	1.12	0	2.5	2		
3	3.61	2.5	0	3		
4	7.21	6.10	3.61	3		
5	4.72	3.61	1.12	3	}	C_3
6	5.31	4.24	1.80	3		
7	4.30	3.20	0.71	3		

Individual	m ₁ (1.0, 1.0)	m ₂ (1.5, 2.0)	m ₃ (3.9,5.1)	cluster
1	0	1.11	5.02	1
2	1.12	0	3.92	2
3	3.61	2.5	1.42	3
4	7.21	6.10	2.20	3
5	4.72	3.61	0.41	3
6	5.31	4.24	0.61	3
7	4.30	3.20	0.72	3

clustering with initial centroids (1, 2, 3)

Step 1

<u>Step 2</u>

<u>PLOT</u>



Elbow method

