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Ensemble Philosophy

• Build many models and combine them

• Only through averaging do we get at the 
truth!

• It’s too hard (impossible?) to build a single 
model that works best
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Real Life example

• Suppose, you want to invest in a company 

XYZ. You are not sure about its 

performance though. 

• So, you look for advice on whether the 

stock price will increase by more than 6% 

per annum or not?
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The survey prediction

• Employee of Company XYZ: 

– In the past, he has been right 70% times. 

• Financial Advisor of Company XYZ: 

– In the past, he has been right 75% times. 

• Stock Market Trader: 

– In the past, he has been right 70% times. 

• Employee of a competitor: 

– In the past, he has been right 60% times. 
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Summary

• • Use multiple learning algorithms (classifiers) 

• Combine the decisions 

• Can be more accurate than the individual classifiers 

• Generate a group of base-learners 

• Different learners use different 

– Algorithms 

– Hyperparameters 

– Representations (Modalities) 

– Training sets
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• Difference in population 

• Difference in hypothesis 

• Difference in modeling 

technique 

• Difference in initial seed



Why ensembles ? 

• There are two main reasons to use an ensemble 

over a single model, and they are related; they are: 

– Performance: An ensemble can make better predictions 

and achieve better performance than any single 

contributing model. 

– Robustness: An ensemble reduces the spread or 

dispersion of the predictions and model performance.
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Ensemble Approaches

• Bagging (Bootstrap aggregating) 

(Unweighted Voting )

• Boosting (Weighted voting – based on 

accuracy)

• Staking (Learn the combination function)



Bagging at training time

Training set

N subsets (with 

replacement)



Bagging at inference time

A test sample

75% confidence



Random Subspace Method at training time

Training data



Random Subspace Method at inference time

A test sample

66% confidence
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1. Random forest is a type of supervised machine learning algorithm 

based on ensemble learning.

2. Ensemble learning is a type of learning where you join different 

types of algorithms or same algorithm multiple times to form a 

more powerful prediction model. 

3. The random forest algorithm combines multiple algorithm of the 

same type i.e. multiple decision trees, resulting in a forest of trees, 

hence the name "Random Forest". 

4. The random forest algorithm can be used for both regression and 

classification tasks.
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The Bagging Algorithm

For

• Obtain bootstrap sample      from the 

training data   

• Build a model             from bootstrap data 

• Dataset with replacement (meaning we can 

select the same value multiple times).
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The Bagging Model

• Regression

• Classification:

– Vote over classifier outputs  
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Boosting

– Boosting algorithms are a set of the low accurate classifier to 

create a highly accurate classifier. 

– Low accuracy classifier (or weak classifier) offers the accuracy 

better than the flipping of a coin. 

– This is done by building a model from the training data, then 

creating a second model that attempts to correct the errors from the 

first model. Models are added until the training set is predicted 

perfectly or a maximum number of models are added. 

– Highly accurate classifier( or strong classifier) offer error rate close 

to 0. Boosting algorithm can track the model who failed the 

accurate prediction. 

– Boosting algorithms are less affected by the overfitting problem.
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Boosting

– Models that are typically used in Boosting 

technique are: 

• XGBoost (Extreme Gradient Boosting) 

• GBM (Gradient Boosting Machine) 

• ADABoost (Adaptive Boosting)
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Adaboost Summary 
• Initially, Adaboost selects a training subset randomly. 

• It iteratively trains the AdaBoost machine learning model by 

selecting the training set based on the accurate prediction of the last 

training. 

• It assigns the higher weight to wrong classified observations so that 

in the next iteration these observations will get the high probability 

for classification. 

• Also, It assigns the weight to the trained classifier in each iteration 

according to the accuracy of the classifier. The more accurate 

classifier will get high weight. 

• This process iterate until the complete training data fits without any 

error or until reached to the specified maximum number of 

estimators. 

• To classify, perform a "vote" across all of the learning algorithms 

you built.
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Boosting
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Boosting (Continued)



Stacking

• Stacked Generalization or “Stacking” for short is 

an ensemble machine learning algorithm. 

• It involves combining the predictions from 

multiple machine learning models on the same 

dataset, like bagging and boosting. •

• Stacking addresses the question: 

– Given multiple machine learning models that are 

skillful on a problem, but in different ways, how do you 

choose which model to use (trust)?
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Stacking II

• Unlike bagging, in stacking, the models are 

typically different (e.g. not all decision 

trees) and fit on the same dataset (e.g. 

instead of samples of the training dataset). 

• Unlike boosting, in stacking, a single model 

is used to learn how to best combine the 

predictions from the contributing models 

(e.g. instead of a sequence of models that 

correct the predictions of prior models).
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Level-0 Models 

(Base-Models)

Level-1 Model 

(Meta-Model)



Stacking Levels

• Level-0 Models (Base-Models): Models fit 

on the training data and whose predictions 

are compiled. provide the input and output 

pairs of the training dataset used to fit the 

meta-model.

• Level-1 Model (Meta-Model): Model that 

learns how to best combine the predictions 

of the base models.
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Stacking levels

• The outputs from the base models used as 

input to the meta-model may be real value 

in the case of regression, and probability 

values, probability like values, or class 

labels in the case of classification.
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Boosting Summary

• Good points
– Fast learning

– Capable of learning any function (given appropriate weak learner)

– Feature weighting

– Very little parameter tuning

• Bad points
– Can overfit data

– Only for binary classification

• Learning parameters (picked via cross validation)
– Size of tree

– When to stop

• Software
– http://www-stat.stanford.edu/~jhf/R-MART.html
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