(support vector machine)
(SVM)




Perceptron Revisited: Linear Separators

= Binary classification can be viewed as the task of
separating classes in feature space:

. wix+b=0

wix+b>0

wix+b<0

¢ f(x) = sign(w™x + b)




Linear Separators

= Which of the linear separators is optimal?




Classification Margin

, _ wW'X. +b
Distance from example x; to the separator ist = o]

Examples closest to the hyperplane are support vectors.

Margin p of the separator is the distance between support
vectors.
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Maximum Margin Classification

= Maximizing the margin is good according to intuition and PAC
theory.

= |mplies that only support vectors matter; other training
examples are ignorable.
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The Objective of SVM

Since x!is on the hyperplane
defined by w.x + b = +1, we know that
] w.xl+ b = 1. If we substitute for x1:




Towards Learning an SVM

= How to learn an SVM hy(x) = 08Tx, where @ = [0, ..., 0,,,]
and x = [x,, ..., xm]?
= Say, by minimizing . That is:
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Towards Learning an SVM

= How to learn an SVM hgy(x) = 8" x, where 8 = [0y, ..., 0,,,]
and x = [x,, ..., xm]?

= Say, by minimizing

Gradient
Descent
might get
stuck at a
local min
and fail to
locate the
global min!
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Unfortunately, if
_» Wwe plot this cost
function, it will turn
out to be “non-convex



= SVM Lab time



Question ?
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