(support vector machine) (SVM)

Perceptron Revisited: Linear Separators

 Binary classification can be viewed as the task of separating classes in feature space:

Linear Separators

Which of the linear separators is optimal?

Classification Margin

- Distance from example \mathbf{x}_i to the separator is $r = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$
- Examples closest to the hyperplane are *support vectors*.
- Margin p of the separator is the distance between support vectors.

Maximum Margin Classification

- Maximizing the margin is good according to intuition and PAC theory.
- Implies that only support vectors matter; other training examples are ignorable.

The Objective of SVM

Towards Learning an SVM

• How to learn an SVM $h_{\theta}(x) = \theta^T x$, where $\theta = [\theta_0, ..., \theta_m]$ and $x = [x_0, ..., xm]$?

Say, by minimizing Mean Squared Error (MSE). That is:

Towards Learning an SVM

• How to learn an SVM $h_{\theta}(x) = \theta^T x$, where $\theta = [\theta_0, ..., \theta_m]$ and $x = [x_0, ..., xm]$?

Say, by minimizing *Mean Squared Error (MSE)*. That is:

SVM Lab time

Question ?

