Data Preprocessing Lecture #8

Why Data Analysis for Your Organization is important?

- Better Targeting
- Knowing your Target Customers
- New Innovations
- Cut Costs of Operation
- Helps Solve Problems

What is Data?

Object

- Collection of *data objects* and their *attributes*
- An *attribute* is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, dimension, or feature
- A collection of attributes describe an *object*
 - Object is also known as record, point, case, sample, entity, or instance

		Attributes					
	~	Tid	Refund	Marital Status	Taxable Income	Cheat	
	(
		1	Yes	Single	125K	No	
		2	No	Married	100K	No	
		3	No	Single	70K	No	
		4	Yes	Married	120K	No	
。 <		5	No	Divorced	95K	Yes	
		6	No	Married	60K	No	
		7	Yes	Divorced	220K	No	
		8	No	Single	85K	Yes	
		9	No	Married	75K	No	
	$\overline{\ }$	10	No	Single	90K	Yes	

Types of data sets

- Record
 - Data Matrix
 - Document Data
 - Transaction Data
- Graph
 - World Wide Web
 - Molecular Structures
- Ordered
 - Spatial Data
 - Temporal Data
 - Sequential Data
 - Genetic Sequence Data

Record Data

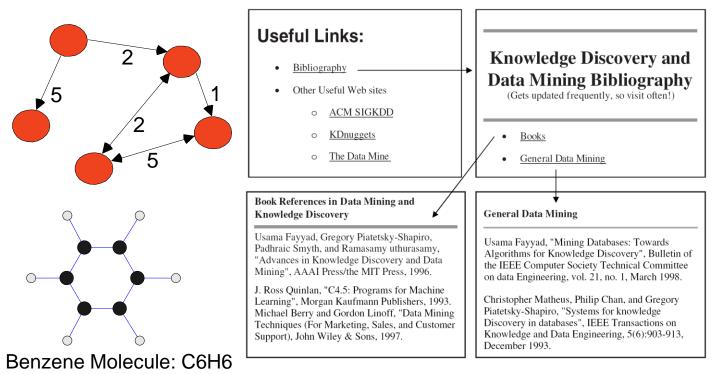
 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Document Data

- Each document becomes a 'term' vector
 - Each term is a component (attribute) of the vector
 - The value of each component is the number of times the corresponding term occurs in the document.

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	ð	0


Transaction Data

- A special type of data, where
 - Each transaction involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.
 - Can represent transaction data as record data

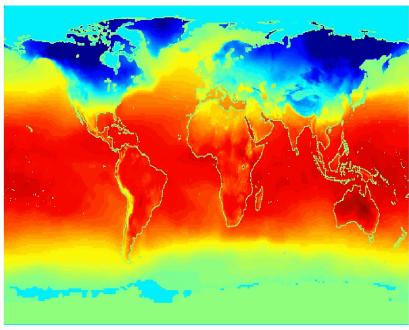
TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

Examples: Generic graph, a molecule, and webpages

Ordered Data

Genomic sequence data


GGTTCCGCCTTCAGCCCCGCGCC CGCAGGGCCCGCCCCGCGCCGTC GAGAAGGGCCCGCCTGGCGGGCG GGGGGAGGCGGGGCCGCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGACCAGGG

Ordered Data

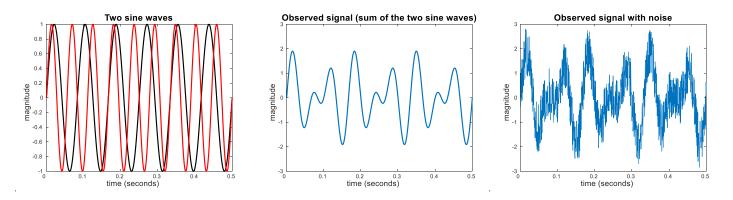
Spatio-Temporal Data

Jan

Average Monthly Temperature of land and ocean

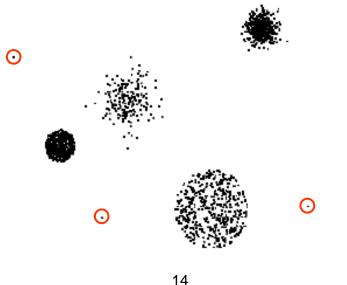
Data Quality ...

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?
- Examples of data quality problems:
 - Noise and outliers
 - Wrong data
 - Fake data
 - Missing values
 - Duplicate data


- Having continuous features that cover very different ranges can cause difficulty for some machine learning algorithms.
- Normalization techniques can be used to change a continuous feature to fall within a specified range while maintaining the relative differences between the values for the feature.
 Desired range

$$a'_{i} = \frac{a_{i} - \min(a)}{\max(a) - \min(a)} \times (high - low) + low$$

Typical ranges [0,1] or [-1,1]


Noise

- For objects, noise is an extraneous object
- For attributes, noise refers to modification of original values
 - Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen
 - The figures below show two sine waves of the same magnitude and different frequencies, the waves combined, and the two sine waves with random noise
 - The magnitude and shape of the original signal is distorted

Outliers

- Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set
 - Case 1: Outliers are noise that interferes with data analysis
 - Case 2: Outliers are the goal of our analysis
 - Credit card fraud
 - Intrusion detection

Missing Values

Reasons for missing values

- Information is not collected (e.g., people decline to give their age and weight)
- Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)

Handling missing values

- Eliminate data objects or variables
- Estimate missing values
 - Example: time series of temperature
 - Example: census results
- Ignore the missing value during analysis

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
 - Major issue when merging data from heterogeneous sources
- Examples:
 - Same person with multiple email addresses
- Data cleaning
 - Process of dealing with duplicate data issues

Correlation measures the linear relationship between objects

$$\operatorname{corr}(\mathbf{x}, \mathbf{y}) = \frac{\operatorname{covariance}(\mathbf{x}, \mathbf{y})}{\operatorname{standard_deviation}(\mathbf{x}) * \operatorname{standard_deviation}(\mathbf{y})} = \frac{s_{xy}}{s_x s_y}, \quad (2.11)$$

where we are using the following standard statistical notation and definitions

covariance
$$(\mathbf{x}, \mathbf{y}) = s_{xy} = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})$$
 (2.12)

standard_deviation(
$$\mathbf{x}$$
) = $s_x = \sqrt{\frac{1}{n-1} \sum_{k=1}^n (x_k - \overline{x})^2}$
standard_deviation(\mathbf{y}) = $s_y = \sqrt{\frac{1}{n-1} \sum_{k=1}^n (y_k - \overline{y})^2}$

$$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k \text{ is the mean of } \mathbf{x}$$
$$\overline{y} = \frac{1}{n} \sum_{k=1}^{n} y_k \text{ is the mean of } \mathbf{y}$$
17

Probability

- The more certain an outcome, the less information that it contains and vice-versa
 - For example, if a coin has two heads, then an outcome of heads provides no information
 - More quantitatively, the information is related the probability of an outcome
 - The smaller the probability of an outcome, the more information it provides and vice-versa
 - Entropy is the commonly used measure

Entropy

- For example:
 - a variable (event), *X*,
 - with *n* possible values (outcomes), *x*₁, *x*₂ ..., *x*_n
 - each outcome having probability, p₁, p₂ ..., p_n
 - the entropy of X, H(X), is given by

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

- Entropy is between 0 and log₂n and is measured in bits
 - Thus, entropy is a measure of how many bits it takes to represent an observation of X on average

Entropy Examples

• For a coin with probability p of heads and probability q = 1 - p of tails

 $H = -p\log_2 p - q\log_2 q$

• For
$$p = 0.5$$
, $q = 0.5$ (fair coin) $H = 1$

• For
$$p = 1$$
 or $q = 1$, $H = 0$

What is the entropy of a fair four-sided die?

Entropy for Sample Data: Example

Hair Color	Count	p	-plog ₂ p
Black	75	0.75	0.3113
Brown	15	0.15	0.4105
Blond	5	0.05	0.2161
Red	0	0.00	0
Other	5	0.05	0.2161
Total	100	1.0	1.1540

Maximum entropy is $log_2 5 = 2.3219$

Major Tasks in Data Preprocessing

Data cleaning

- Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies
- Data integration
 - Integration of multiple databases, data cubes, files, or notes
- Data transformation
 - Normalization (scaling to a specific range)
 - Aggregation

Data reduction

- Obtains reduced representation in volume but produces the same or similar analytical results
- Data discretization: with particular importance, especially for numerical data
- Data aggregation, dimensionality reduction, data compression, generalization

NumPy:

- introduces objects for multidimensional arrays and matrices, as well as functions that allow to easily perform advanced mathematical and statistical operations on those objects
- provides vectorization of mathematical operations on arrays and matrices which significantly improves the performance
- many other python libraries are built on NumPy

Pandas:

- adds data structures and tools designed to work with table-like data (similar to Series and Data Frames in R)
- provides tools for data manipulation: reshaping, merging, sorting, slicing, aggregation etc.
- allows handling missing data

Link: http://pandas.pydata.org/

matplotlib:

matpl&tlib

- python 2D plotting library which produces publication quality figures in a variety of hardcopy formats
- a set of functionalities similar to those of MATLAB
- Ine plots, scatter plots, barcharts, histograms, pie charts etc.

relatively low-level; some effort needed to create advanced visualization Link: <u>https://matplotlib.org/</u>

Seaborn:

- based on matplotlib
- provides high level interface for drawing attractive statistical graphics
- Similar (in style) to the popular ggplot2 library in R

Python Libraries for Machine Learning learn

SciKit-Learn:

- provides machine learning algorithms: classification, regression, clustering, model validation etc.
- built on NumPy, SciPy and matplotlib

Data Frames attributes

df.attribute	description
dtypes	list the types of the columns
columns	list the column names
axes	list the row labels and column names
ndim	number of dimensions
size	number of elements
shape	return a tuple representing the dimensionality
values	numpy representation of the data

Data Frames methods

df.method()	description
head([n]), tail([n])	first/last n rows
describe()	generate descriptive statistics (for numeric columns only)
max(), min()	return max/min values for all numeric columns
mean(), median()	return mean/median values for all numeric columns
std()	standard deviation
sample([n])	returns a random sample of the data frame
dropna()	drop all the records with missing values 29

Missing Values

df.method()	description
dropna()	Drop missing observations
dropna(how='all')	Drop observations where all cells is NA
dropna(axis=1, how='all')	Drop column if all the values are missing
dropna(thresh = 5)	Drop rows that contain less than 5 non-missing values
fillna(0)	Replace missing values with zeros
isnull()	returns True if the value is missing
notnull()	Returns True for non-missing values 30

Basic Descriptive Statistics

df.method()	description
describe	Basic statistics (count, mean, std, min, quantiles, max)
min, max	Minimum and maximum values
mean, median, mode	Arithmetic average, median and mode
var, std	Variance and standard deviation
sem	Standard error of mean
skew	Sample skewness
kurt	kurtosis 31

Graphics

	description
distplot	histogram
barplot	estimate of central tendency for a numeric variable
violinplot	similar to boxplot, also shows the probability density of the data
jointplot	Scatterplot
regplot	Regression plot
pairplot	Pairplot
boxplot	boxplot
swarmplot	categorical scatterplot
factorplot	General categorical plot 32

Lab for data preprocessing

Question ?

