

Definitions

Sample Space : \{1,2,3,4,5,6\}

Countable sample space : $\{1,2,3,4,5,6\}$ uncountable : 0<S < 5

Unions: $A \cup B=\{1,3,4,5,6\}$
Intersection (joint) : $A \cap B=\{3,5\}$
Complements : $A^{\mathrm{C}}=\{2,4,6\}$

Definitions

Event: set of outcomes of the experiment (subset of sample space).
Marginal probability: the probability of a single event occurring, independent of other events.

$$
P(A)=\frac{3}{6}=0.5
$$

Union probability: the probability of two events.

$$
P(A \cup B)=\frac{5}{6}
$$

Intersection (joint) probability: the probability of two events.

$$
P(A \cap B)=\frac{2}{6}
$$

Definitions

$$
\mathrm{A}=\{\bigcirc, \because, \because\}, \mathrm{B}=\{\because, \because, \because, \because\}
$$

Conditional probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{2}{6} \times \frac{6}{4}=0.5
$$

Definitions

Example : calculate the probability of tossing two fair dice were the first one get (2) and the sum of two dice less than 5

$$
P\left(D_{2}=2 \mid D_{1}+D_{2} \leq 5\right)
$$

Event $1=P\left(D_{2}=2\right)$
Event $2=P\left(D_{1}+D_{2} \leq 5\right)$

$$
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{1}\right)}
$$

$$
P\left(D_{1}+D_{2} \leq 5\right)=
$$

Definitions

Example : calculate the probability of tossing two fair dice were the first one get (2) and the sum of two dice less than 5

$$
P\left(D_{2}=2 \mid D_{1}+D_{2} \leq 5\right)
$$

Event $1=P\left(D_{2}=2\right)$
Event 2 $=P\left(D_{1}+D_{2} \leq 5\right)$

$$
\begin{gathered}
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{2}\right)} \\
P\left(E_{2}=D_{1}+D_{2} \leq 5\right)=\frac{10}{36} \\
P\left(E_{1} \cap E_{2}\right)=\frac{3}{36}
\end{gathered}
$$

$P\left(E_{1} \cap E_{2}\right)$

Definitions

Example : calculate the probability of tossing two fair dice were the first one get

 (2) and the sum of two dice less than 5$$
P\left(D_{2}=2 \mid D_{1}+D_{2} \leq 5\right)
$$

Event $1=P\left(D_{2}=2\right)$
Event $2=P\left(D_{1}+D_{2} \leq 5\right)$

$P\left(E_{1}\right) \quad P\left(E_{2}\right)$

$P\left(E_{1} \cap E_{2}\right)$

$$
\begin{gathered}
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{2}\right)} \\
P\left(E_{2}=D_{1}+D_{2} \leq 5\right)=\frac{10}{36} \\
P\left(E_{1} \cap E_{2}\right)=\frac{3}{36} \\
P\left(E_{1} \mid E_{2}\right)=\frac{3 / 36}{10 / 36}=0.3
\end{gathered}
$$

											\bullet	\bigcirc	\because	$0 \cdot 0$
		1	2	3	4	5	6		1	2	3	4	5	6
	1	2	3	4	5	6	7	1	2	3	4	5	6	7
-	2	3	4	5	6	7	8	2	3	4	5	6	7	8
	3	4	5	6	7	8	9	3	4	5	6	7	8	9
-	4	5	6	7	8	9	10	4	5	6	7	8	9	10
	5	6	7	8	9	10	11	5	6	7	8	9	10	11
	6	7	8	9	10	11	12	6	7	8	9		11	12

Definitions

Conditional probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{2}{6} \times \frac{6}{4}=0.5
$$

Multiplication Rule:

$$
P(A \cap B)=P(B) P(A \mid B)
$$

Intersection
(joint)
Conditional

Exercise

Suppose there is an event 60\% of attendance are woman (W) and 40% of them are pregnant (Pr). What the chance of a person you select from this event is a woman AND pregnant

$$
\begin{aligned}
P(W \cap P r) & =P(W) P(W \mid P r) \\
& =0.6 \times 0.4=0.24
\end{aligned}
$$

Definitions

$$
\mathrm{A}=\{\bigcirc, \because, \because\}, \mathrm{B}=\{\because, \because, \because,(\because\}
$$

Additional Rule:

$$
P(A \cup B)=P(B)+P(A)-P(A \cap B)
$$

Intersection
(joint)

Exercise

Suppose there is an event 60% of attendance are woman (W) and 50% of class are married (M). What the chance of a person you select from this event is a woman OR married

Bayes Theorem

$$
\begin{gathered}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
P(A \cap B)=P(B) P(A \mid B)=P(B \cap A) \\
P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{P(B) P(A \mid B)}{P(A)}
\end{gathered}
$$

Bayes Theorem

$$
P\left(C_{1} \mid x_{1} \& x_{2} \& x_{3} \& x_{4}\right)=\frac{P\left(x_{1} \mid C_{1}\right) * P\left(x_{2} \mid C_{1}\right) * P\left(x_{3} \mid C_{1}\right) * P\left(x_{4} \mid C_{1}\right) * P\left(C_{1}\right)}{P\left(x_{1}\right) * P\left(x_{2}\right) * P\left(x_{3}\right) * P\left(x_{4}\right)}
$$

Gaussian Naïve Bayes Classifier:

continuous values associated with each feature are assumed to be distributed according to a Gaussian distribution

Gaussian distribution

$$
\begin{aligned}
& P(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \\
& \mu=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
& \sigma=\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right]^{0.5}
\end{aligned}
$$

Multinomial Naïve Bayes Classifier

Feature vectors represent the frequencies with which certain events have been generated by a multinomial distribution.
This is the event model typically used for document classification.

Bernoulli Naïve Bayes Classifier:

In the multivariate Bernoulli event model, features are independent booleans (binary variables) describing inputs.
binary term occurrence (i.e. a word occurs in a document or not)

Annual revenue growth

-659

