## Background: Generative and Discriminative Classifiers

## Logistic <br> Regression

Logistic Regression
Important analytic tool in natural and social sciences

Baseline supervised machine learning tool for classification

Is also the foundation of neural networks

Generative and Discriminative Classifiers
Naive Bayes is a generative classifier
by contrast:

Logistic regression is a discriminative classifier

## Generative and Discriminative Classifiers

Suppose we're distinguishing cat from dog images

imagenet

imagenet

## Generative Classifier (Naive Bayes ):

- Build a model of what's in a cat image
- Knows about whiskers, ears, eyes
- Assigns a probability to any image:
- how cat-y is this image?


Also build a model for dog images

Now given a new image:
Run both models and see which one fits better

## Discriminative Classifier (Logistic regression )

Just try to distinguish dogs from cats


Oh look, dogs have collars! Let's ignore everything else

Finding the correct class c from a document din Generative vs Discriminative Classifiers

Naive Bayes

$$
\hat{c}=\underset{c \in C}{\operatorname{argmax}} \overbrace{P(d \mid c)}^{\text {likelihood }} \overbrace{P(c)}^{\text {prior }}
$$

Logistic Regression

$$
\hat{c}=\underset{c \in C}{ } \begin{array}{ll} 
& \text { posterior } \\
\operatorname{argmax} & P(c \mid d)
\end{array}
$$

## Components of a probabilistic machine learning classifier

Given $m$ input/output pairs ( $x^{(i)}, y^{(i)}$ ):

1. A feature representation of the input. For each input observation $x^{(i)}$, a vector of features $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Feature $j$ for input $x^{(i)}$ is $\mathrm{x}_{\mathrm{j}}$, more completely $x_{j}^{(i)}$, or sometimes $f_{j}(x)$.
2. A classification function that computes $\hat{y}$, the estimated class, via $p(y \mid x)$, like the sigmoid or softmax functions.
3. An objective function for learning, like cross-entropy loss.
4. An algorithm for optimizing the objective function: stochastic gradient descent.

The two phases of logistic regression

Training: we learn weights $w$ and $b$ using stochastic gradient descent

Test: Given a test example $x$ we compute $p(y \mid x)$ using learned weights $w$ and $b$, and return whichever label $(y=1$ or $y=0)$ is higher probability

## Classification in Logistic Regression

## Logistic <br> Regression

Classification Reminder

## Positive/negative sentiment

 Spam/not spamAuthorship attribution
(Hamilton or Madison?)


Alexander Hamilton

## Text Classification: definition

Input:

- a document $x$
- a fixed set of classes $C=\left\{c_{1}, c_{2}, \ldots, c_{j}\right\}$

Output: a predicted class $\hat{y} \in C$

## Binary Classification in Logistic Regression

Given a series of input/output pairs:

- ( $\left.x^{(i)}, y^{(i)}\right)$

For each observation $x^{(i)}$

- We represent $x^{(i)}$ by a feature vector $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$
- We compute an output: a predicted class $\hat{y}^{(i)} \in\{0,1\}$


## Features in logistic regression

For feature $x_{i}$, weight $w_{i}$ tells is how important is $x_{i}$

- $x_{i}=$ "review contains 'awe some'": $w_{i}=+10$
- $x_{j}=$ "review contains 'abysmal'": $w_{j}=-10$
- $x_{k}=$ "review contains 'normal'": $\mathrm{w}_{\mathrm{k}}=-2$


## Logistic Regression for one observation x

Input observation: vector $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$
Weights: one per feature: $\mathrm{W}=\left[w_{1}, w_{2}, \ldots, w_{n}\right]$

- Sometimes we call the weights $\theta=\left[\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right]$

Output: a predicted class $\hat{y} \in\{0,1\}$
(multinomial logistic regression: $\hat{y} \in\{0,1,2,3,4\}$ )

## How to do classification

For each feature $x_{i}$, weight $w_{i}$ tells us importance of $x_{i}$

- (Plus we'll have a bias b)

We'll sum up all the weighted features and the bias

$$
\begin{aligned}
& X^{n} \\
& z=\quad w_{i} x_{i}+b \\
& i=1 \\
& z=w \cdot x+b
\end{aligned}
$$

If this sum is high, we say $y=1$; if low, then $y=0$

## But we want a probabilistic classifier

We need to formalize "sum is high".
We'd like a principled classifier that gives us a probability, just like Naive Bayes did
We want a model that can tell us:

$$
\begin{aligned}
& p(y=1 \mid x ; \theta) \\
& p(y=0 \mid x ; \theta)
\end{aligned}
$$

The problem: z isn't a probability, it's just a number!

$$
z=w \cdot x+b
$$

Solution: use a function of $z$ that goes from 0 to 1

$$
y=s(z)=\frac{1}{1+e^{-z}}=\frac{1}{1+\exp (-z)}
$$

The very useful sigmoid or logistic function


## Idea of logistic regression

We'll compute $\mathrm{w} \cdot \mathrm{x}+\mathrm{b}$
And then we'll pass it through the sigmoid function:

$$
\sigma(w \cdot x+b)
$$

And we'll just treat it as a probability

Making probabilities with sigmoids

$$
\begin{aligned}
P(y=1) & =\sigma(w \cdot x+b) \\
& =\frac{1}{1+\exp (-(w \cdot x+b))} \\
P(y=0) & =1-\sigma(w \cdot x+b) \\
& =1-\frac{1}{1+\exp (-(w \cdot x+b))} \\
& =\frac{\exp (-(w \cdot x+b))}{1+\exp (-(w \cdot x+b))}
\end{aligned}
$$

## By the way:

$$
\begin{aligned}
P(y=0) & =1-\sigma(w \cdot x+b) \\
& =1-\frac{1}{1+\exp (-(w \cdot x+b))} \quad \text { Because } \\
& =\frac{\exp (-(w \cdot x+b))}{1+\exp (-(w \cdot x+b))}
\end{aligned} \quad \begin{gathered}
1-\sigma(x)=\sigma(-x)
\end{gathered}
$$

## Turning a probability into a classifier

$$
\hat{y}= \begin{cases}1 & \text { if } P(y=1 \mid x)>0.5 \\ 0 & \text { otherwise }\end{cases}
$$

0.5 here is called the decision boundary

The probabilistic classifier $P(y=1)=\sigma(w \cdot x+b)$


## Turning a probability into a classifier

$$
\hat{y}= \begin{cases}1 \text { if } P(y=1 \mid x)>0.5 & \text { if } \mathrm{w} \cdot \mathrm{x}+\mathrm{b}>0 \\ 0 \text { otherwise } & \text { if } \mathrm{w} \cdot \mathrm{x}+\mathrm{b} \leq 0\end{cases}
$$

Logistic Regression: a text example on sentiment classification

## Logistic Regression

## Sentiment example: does $\mathrm{y}=1$ or $\mathrm{y}=0$ ?

It's hokey . There are virtually no surprises, and the writing is second-rate . So why was it so enjoyable ? For one thing, the cast is great. Another nice touch is the music . I was overcome with the urge to get off the couch and start dancing . It sucked me in, and it'll do the same to you .

It'sthokey. There are virtually norsurprises, and the writing is second-rate.
So why was it soenjoyable ? For one thing, the cast is
greap. Anothernicetouch is the music. (Dvas overcome with the urge to get off the couch and start,dancing. It suckedme in, and it'll do the same to


$$
x_{5}=0
$$

$$
x_{6}=4.19
$$



| Var | Definition | Value in Fig. 5.2 |
| :--- | :--- | :--- |
| $x_{1}$ | count (positive lexicon $) \in$ doc $)$ | 3 |
| $x_{2}$ | count (negative lexicon) $\in \operatorname{doc})$ | 2 |
| $x_{3}$ | $\left\{\begin{array}{l}1 \text { if "no" } \in \text { doc } \\ 0 \text { otherwise }\end{array}\right.$ | 1 |
| $x_{4}$ | count $(1$ st and 2nd pronouns $\in$ doc $)$ | 3 |
| $x_{5}$ | $\left\{\begin{array}{l}1 \text { if "!" } \in \text { doc } \\ 0 \text { otherwise }\end{array}\right.$ | 0 |
| $x_{6}$ | $\log ($ word count of doc $)$ | $\ln (66)=4.19$ |

## Classifying sentiment for input x

| Var | Definition | Value |
| :---: | :---: | :---: |
| $x_{1}$ | count(positive lexicon) $\in$ doc) | 3 (great, nice, |
| $x_{2}$ | count(negative lexicon) $\in$ doc) | 2 enjoyable, etc.) |
| $x_{3}$ | $\left\{\begin{array}{l} 1 \text { if "no" } \in \text { doc } \\ 0 \text { otherwise } \end{array}\right.$ | 1 ) |
| $x_{4}$ | count(1st and 2nd pronouns $\in$ doc) | 3 |
| $x_{5}$ | $\left\{\begin{array}{l} 1 \text { if "!" } \in \text { doc } \\ 0 \text { otherwise } \end{array}\right.$ | 0 |
| $x_{6}$ | $\log$ (word count of doc) | $\ln (66)=4.19$ |
| Suppose w $=[2.5,-5.0,-1.2,0.5,2.0,0.7]$ |  |  |

## Classifying sentiment for input x

$$
\begin{aligned}
p(+\mid x)=P(Y=1 / x) & =s(w \cdot x+b) \\
& =s([2.5,-5.0,-1.2,0.5,2.0,0.7] \cdot[3,2,1,3,0,4.19]+0.1) \\
& =s(.833) \\
& =0.70 \\
p(-\mid x)=P(Y=0 / x) & =1-s(w \cdot x+b) \\
& =0.30
\end{aligned}
$$

Classification in (binary) logistic regression: summary Given:

- a set of classes: (+ sentiment,- sentiment)
- a vector $\mathbf{x}$ of features [x1, $\mathrm{x} 2, \ldots, x n$ ]
- x1= count( "awesome")
- x2 $=\log$ (number of words in review)
- A vector w of weights [w1, w2, ..., wn]
- $w_{i}$ for each feature $f_{i}$

$$
\begin{aligned}
P(y=1) & =\sigma(w \cdot x+b) \\
& =\frac{1}{1+e^{-(w \cdot x+b)}}
\end{aligned}
$$

Stochastic Gradient Descent

## Logistic <br> Regression

Our goal: minimize the loss
Let's make explicit that the loss function is parameterized by weights $\theta=(w, b)$

- And we'll represent $\hat{y}$ as $f(x ; \theta)$ to make the dependence on $\theta$ more obvious
We want the weights that minimize the loss, averaged over all examples:

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L_{\mathrm{CE}}\left(f\left(x^{(i)} ; \theta\right), y^{(i)}\right)
$$

## How much do we move in that direction?

- The value of the gradient (slope in our example) $\frac{d}{d w} L(f(x ; w), y)$ weighted by a learning rate $\eta$
- Higher learning rate means move $w$ faster

$$
w^{t+1}=w^{\dagger}-h \frac{d}{d w} L(f(x, w), y)
$$

## Mini-batch training

Stochastic (online) gradient descent chooses a single random example at a time.

That can result in choppy movements
More common to compute gradient over batches of training instances.

Batch training: entire dataset
Mini-batch training: $m$ examples (512, or 1024)

## Confusion Matrix

| Measurement | Formula |
| :--- | :---: |
| Accuracy, recognition rate | $\frac{T P+T N}{P+N}$ |
| Error rate, misclassification <br> rate | $\frac{F P+F N}{P+N}$ |
| True positive rate, sensitivity, <br> recall | $\frac{T P}{P}$ |
| True negative rate, specificity | $\frac{T N}{N}$ |
| Precision | $\frac{T P}{T P+F P}$ |
| $F_{1}$ value, harmonic mean of <br> precision and recall | $\frac{2 \times \text { precision } \times \text { recall }}{\text { precision }+ \text { recall }}$ |
| $F_{\beta}$ value, where $\beta$ is a non- <br> negative real number | $\frac{\left(1+\beta^{2}\right) \times \text { precision } \times \text { recall }}{\beta^{2} \times \text { precision }+ \text { recall }}$ |


| Predicted | Yes | No | Total |
| :---: | :---: | :---: | :---: |
| Actual | $T P$ | $F N$ | $P$ |
| Nos | $F P$ | $T N$ | $N$ |
| Total | $P^{\prime}$ | $N^{\prime}$ | $P+N$ |

## The END

