Logistic Regression

Background: Generative and Discriminative Classifiers

Logistic Regression

Important analytic tool in natural and social sciences

Baseline supervised machine learning tool for classification

Is also the foundation of neural networks

Generative and Discriminative Classifiers Naive Bayes is a generative classifier

by contrast:

Logistic regression is a **discriminative** classifier

Generative and Discriminative Classifiers

Suppose we're distinguishing cat from dog images

imagenet

imagenet

Generative Classifier (Naive Bayes):

- Build a model of what's in a cat image
 - Knows about whiskers, ears, eyes
 - Assigns a probability to any image:
 - how cat-y is this image?

Also build a model for dog images

Now given a new image: Run both models and see which one fits better

Discriminative Classifier (Logistic regression) Just try to distinguish dogs from cats

Oh look, dogs have collars! Let's ignore everything else Finding the correct class c from a document d in Generative vs Discriminative Classifiers

Naive Bayes

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \quad \overbrace{P(d|c)}^{\text{likelihood prior}} \quad \overbrace{P(c)}^{\text{prior}}$$

Logistic Regression

 $\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c/d)$

Components of a probabilistic machine learning classifier

Given *m* input/output pairs $(x^{(i)}, y^{(i)})$:

- 1. A **feature representation** of the input. For each input observation $x^{(i)}$, a vector of features $[x_1, x_2, ..., x_n]$. Feature *j* for input $x^{(i)}$ is x_i , more completely $x_j^{(i)}$, or sometimes $f_j(x)$.
- 2. A classification function that computes \hat{y} , the estimated class, via p(y|x), like the **sigmoid** or **softmax** functions.
- 3. An objective function for learning, like **cross-entropy loss**.
- 4. An algorithm for optimizing the objective function: **stochastic** gradient descent.

The two phases of logistic regression

Training: we learn weights *w* and *b* using **stochastic gradient descent**

Test: Given a test example x we compute p(y|x) using learned weights w and b, and return whichever label (y = 1 or y = 0) is higher probability

Logistic Regression

Classification in Logistic Regression

Classification Reminder

Positive/negative sentiment Spam/not spam Authorship attribution (Hamilton or Madison?)

Alexander Hamilton

Text Classification: definition

Input:

- a document **x**
- a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$

Output: a predicted class $\hat{y} \in C$

Binary Classification in Logistic Regression

Given a series of input/output pairs: • (x⁽ⁱ⁾, y⁽ⁱ⁾)

For each observation x⁽ⁱ⁾

- We represent x⁽ⁱ⁾ by a feature vector [x₁, x₂,..., x_n]
- We compute an output: a predicted class $\hat{y}^{(i)} \in \{0,1\}$

Features in logistic regression

- For feature x_i, weight w_i tells is how important is x_i
 - x_i ="review contains 'awesome'": w_i = +10
 - x_j ="review contains 'abysmal'": w_j = -10
 - x_k = "review contains 'normal'": w_k = -2

Logistic Regression for one observation x

Input observation: vector $x = [x_1, x_2, ..., x_n]$ Weights: one per feature: $W = [w_1, w_2, ..., w_n]$ • Sometimes we call the weights $\theta = [\theta_1, \theta_2, ..., \theta_n]$ Output: a predicted class $\hat{y} \in \{0, 1\}$

(multinomial logistic regression: $\hat{y} \in \{0, 1, 2, 3, 4\}$)

How to do classification

For each feature x_i, weight w_i tells us importance of x_i
(Plus we'll have a bias b)

We'll sum up all the weighted features and the bias

 X^{n} $Z = W_{i}X_{i} + b$ i=1 $Z = W \cdot X + b$ If this sum is high, we say y=1; if low, then y=0

But we want a probabilistic classifier

We need to formalize "sum is high".

We'd like a principled classifier that gives us a probability, just like Naive Bayes did

We want a model that can tell us:

p(y=1|x; θ) p(y=0|x; θ) The problem: z isn't a probability, it's just a number!

$z = w \cdot x + b$

Solution: use a function of z that goes from 0 to 1

$$y = s(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)}$$

The very useful sigmoid or logistic function

Idea of logistic regression

We'll compute w·x+b And then we'll pass it through the sigmoid function:

 $\sigma(w \cdot x + b)$

And we'll just treat it as a probability

Making probabilities with sigmoids

$$P(y=1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$P(y=0) = 1 - \sigma(w \cdot x + b)$$

$$= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}$$

))

By the way:

$$P(y=0) = 1 - \sigma(w \cdot x + b) = \sigma(-(w \cdot x + b))$$
$$= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$$
Because
$$= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}$$
$$1 - \sigma(x) = \sigma(-x)$$

Turning a probability into a classifier

$$\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

0.5 here is called the **decision boundary**

Turning a probability into a classifier

$\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} & \text{if } w \cdot x + b \le 0 \end{cases}$

Logistic Regression

Logistic Regression: a text example on sentiment classification

Sentiment example: does y=1 or y=0?

It's hokey . There are virtually no surprises , and the writing is second-rate . So why was it so enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do the same to you .

Var	Definition	Value in Fig. 5.2
<i>x</i> ₁	$count(positive lexicon) \in doc)$	3
x_2	$count(negative lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
<i>x</i> ₄	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
<i>x</i> ₆	log(word count of doc)	$\ln(66) = 4.19$

Classifying sentiment for input x

Var	Definition	Value			
x_1 x_2	count(positive lexicon) \in doc) count(negative lexicon) \in doc) $(1 \text{ if "no"} \in \text{doc})$	 3 (great, nice, 2 enjoyable, etc. 			
<i>x</i> ₃	$\begin{cases} 1 & \text{if } \text{if } 0 \\ 0 & \text{otherwise} \end{cases}$	1			
x_4 x_5	count(1st and 2nd pronouns \in doc) $\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	3 0			
<i>x</i> ₆	log(word count of doc)	ln(66) = 4.19			
Suppose w = $[2.5, -5.0, -1.2, 0.5, 2.0, 0.7]$					
	b = 0.1				

Classifying sentiment for input x

 $p(+|x) = P(Y = 1|x) = s(w \cdot x + b)$

- $= s([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$
- = s(.833)
- = 0.70

$$p(-|x) = P(Y = 0|x) = 1 - s(w \cdot x + b)$$

= 0.30

Classification in (**binary**) logistic regression: summary **Given**:

- a set of classes: (+ sentiment,- sentiment)
- a vector **x** of features [x1, x2, ..., xn]
 - x1= count("awesome")
 - x2 = log(number of words in review)
- A vector w of weights [w1, w2, ..., wn]
 - w_i for each feature f_i

$$P(y=1) = \sigma(w \cdot x + b)$$
$$= \frac{1}{1 + e^{-(w \cdot x + b)}}$$

Logistic Regression

Stochastic Gradient Descent

Our goal: minimize the loss

Let's make explicit that the loss function is parameterized by weights $\theta = (w,b)$

• And we'll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious

We want the weights that minimize the loss, averaged over all examples:

$$\hat{\theta} = \operatorname{argmin}_{\theta} \frac{1}{m} \sum_{i=1}^{m} L_{\text{CE}}(f(x^{(i)}; \theta), y^{(i)})$$

How much do we move in that direction ?

- The value of the gradient (slope in our example) $\frac{d}{dw}L(f(x;w),y)$ weighted by a **learning rate** η
- Higher learning rate means move *w* faster

$$w^{t+1} = w^t - h \frac{d}{dw} L(f(x, w), y)$$

Mini-batch training

Stochastic (online) gradient descent chooses a single random example at a time.

That can result in choppy movements

More common to compute gradient over batches of training instances.

Batch training: entire dataset

Mini-batch training: *m* examples (512, or 1024)

Confusion Matrix

Measurement	Formula	
Accuracy, recognition rate	$\frac{TP + TN}{P + N}$	
Error rate, misclassification rate	$\frac{FP + FN}{P + N}$	
True positive rate, sensitivity, recall	$\frac{TP}{P}$	
True negative rate, specificity	$\frac{TN}{N}$	
Precision	$\frac{TP}{TP + FP}$	
F_1 value, harmonic mean of precision and recall	$\frac{2 \times precision \times recall}{precision + recall}$	
F_{β} value, where β is a non- negative real number	$\frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$	

Predicted Actual	Yes	No	Total
Yes	TP	FN	Р
No	FP	TN	N
Total	Ρ'	N'	P + N

The END