Basics

Week 1

Learning feasibility

By : Dr. Mustafa M. Shiple

Machine Learning

Introduction

Learning is used when

- A pattern exists ullet
- We cannot pin it down mathematically
- We have data on it

Input space (χ): patient's medical history, symptoms, personal health information etc. **Output space** (y): all possible diseases **UTarget function** $f: \chi \rightarrow \gamma$: ideal formula to identify a patient's problem **UData set:** All available patients' information and their corresponding correct problem diagnostic.

whole image

Feasibility of Learning

Introduction

- Consider a 'bin' with red and green marbles.
- \mathbb{p} [picking a red marble] = μ
- $p[picking a green marble] = 1 \mu$

of red marbles

SAMPLE v = fractionof red marbles $\mu = \text{probability}$

*Learning from data, Yaser S. Abu-Mostafa

Hoeffding's inequality

$\mathbb{P}[|\nu - \mu| > \epsilon] \leq$ But if N is not that much (*)

$$[|\nu - \mu| > \epsilon] \le e^{-N}$$

IS that all what we have !!!!

 $\mathbb{P}[|\nu - \mu| > \epsilon] \le e^{-\epsilon^2 N}$ $\mathbb{P}[|\nu - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$

*Learning from data, Yaser S. Abu-Mostafa

Hoeffding's inequality $\mathbb{P}[|\nu - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$

P.A.C (Probable approximate correct) Not dependent on μ

trade off ϵ and N

$\mu = \nu$

*Learning from data, Yaser S. Abu-Mostafa

