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REGRESSION EXAMPLE:

• - The green curve shows the 

function sin 2𝜋𝑥  used to generate 

date with gaussian noise 

distribution
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Components of learning
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n item
Value 

(𝝌)
Decision 

(𝒚)

1

Age 23

Yes
Annual salary $ (30 000)

Residence (years) 1

Current debt $ (15 000)

2

Age 30

No
Annual salary $ (38 000)

Residence (years) 2

Current debt $ (30 000)

3

Age 35

Yes
Annual salary $ (38 000)

Residence (years) 10

Current debt $ (10 000)

⋮ ⋮ ⋮ ⋮

N

Age 24

Yes
Annual salary $ (25 000)

Residence (years) 2

Current debt $ (5 000)

𝒚𝒏 = 𝒇 𝒙𝒏

𝒇 =? ? ? ?

𝝌 : 𝒊𝒏𝒑𝒖𝒕 𝒔𝒑𝒂𝒄𝒆 , 𝒚 : 𝒐𝒖𝒕𝒑𝒖𝒕 𝒔𝒑𝒂𝒄𝒆

"𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒔𝒆𝒕"



Component of learning

Problem Setting: 
• Set of possible instances 𝝌
• Unknown target function 𝒚𝒏 = 𝓕 𝒙𝒏  , 𝒳 → 𝒴
• Set of function hypotheses ℋ: 𝒽|𝒽:  𝒳 → 𝒴  

Input: 

 • Training examples { 𝒳𝑖 → 𝒴𝑖  } of unknown target function ℱ

Output: 

 • Hypothesis 𝒽 ∈  ℋ that best approximates target function



Exercise 1.1

Express each of the following tasks in the framework of learning from data by specifying :

the input space X, output space Y, target function ƒ: X → Y, and the specifics of the data set 
that we will learn from.
 (a) Medical diagnosis: A patient walks in with a medical history and some symptoms, and you 

 want to identify the problem.

❑ Input space (𝝌): 
❑ Output space (𝒚): 
❑ Target function  𝒇 : 𝝌 → 𝒚 :
❑ Data set:



Exercise 1.1

Express each of the following tasks in the framework of learning from data by specifying :

the input space X, output space Y, target function ƒ: X → Y, and the specifics of the data set 
that we will learn from.
 (a) Medical diagnosis: A patient walks in with a medical history and some symptoms, and you 

 want to identify the problem.

❑ Input space (𝝌): patient's medical history, symptoms, personal health information etc.

❑ Output space (𝒚): all possible diseases

❑ Target function  𝒇 : 𝝌 → 𝒚 : ideal formula to identify a patient's problem

❑ Data set: All available patients' information and their corresponding correct problem diagnostic.



Exercise 1.1

Express each of the following tasks in the framework of learning from data by specifying :

the input space X, output space Y, target function ƒ: X → Y, and the specifics of the data set 
that we will learn from.
 (B) Handwritten digit recognition (for example postal code recognition for mail sorting).

❑ Input space (𝝌): 
❑ Output space (𝒚): 
❑ Target function  𝒇 : 𝝌 → 𝒚 :
❑ Data set:



Exercise 1.1

Express each of the following tasks in the framework of learning from data by specifying :

the input space X, output space Y, target function ƒ: X → Y, and the specifics of the data set 
that we will learn from.
 (B) Handwritten digit recognition (for example postal code recognition for mail sorting).

❑ Input space (𝝌): handwritten digits (digitalized) .

❑ Output space (𝒚): 0-9 digits

❑ Target function  𝒇 : 𝝌 → 𝒚 : ideal formula match a handwritten digit to a correct digit

❑ Data set: handwritten digits and their corresponding correct matches



Components of learning
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n item
Value 

(𝝌)
Decision 

(𝒚)

1

Age 23

Yes
Annual salary $ (30 000)

Residence (years) 1

Current debt $ (15 000)

2

Age 30

No
Annual salary $ (38 000)

Residence (years) 2

Current debt $ (30 000)

3

Age 35

Yes
Annual salary $ (38 000)

Residence (years) 10

Current debt $ (10 000)

⋮ ⋮ ⋮ ⋮

N

Age 24

Yes
Annual salary $ (25 000)

Residence (years) 2

Current debt $ (5 000)

𝒚𝒏 = 𝒇 𝒙𝒏

𝒇 = ? ? ? ?

𝝌 : 𝒊𝒏𝒑𝒖𝒕 𝒔𝒑𝒂𝒄𝒆 , 𝒚 : 𝒐𝒖𝒕𝒑𝒖𝒕 𝒔𝒑𝒂𝒄𝒆

"𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒔𝒆𝒕"

𝒚 = −𝟏 , +𝟏

𝒙 ∈ ℝ𝒅 
Where d : multiple dimensions represents age, salary …etc.



Components of learning
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n item
Value 

(𝝌)
Decision 

(𝒚)

1

Age 23

Yes
Annual salary $ (30 000)

Residence (years) 1

Current debt $ (15 000)

2

Age 30

No
Annual salary $ (38 000)

Residence (years) 2

Current debt $ (30 000)

3

Age 35

Yes
Annual salary $ (38 000)

Residence (years) 10

Current debt $ (10 000)

⋮ ⋮ ⋮ ⋮

N

Age 24

Yes
Annual salary $ (25 000)

Residence (years) 2

Current debt $ (5 000)

𝒚𝒏 = 𝒇 𝒙𝒏

𝒇 = ? ? ? ?

𝝌 : 𝒊𝒏𝒑𝒖𝒕 𝒔𝒑𝒂𝒄𝒆 , 𝒚 : 𝒐𝒖𝒕𝒑𝒖𝒕 𝒔𝒑𝒂𝒄𝒆

"𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒔𝒆𝒕" 𝒚 = −𝟏 , +𝟏

𝒙 ∈ ℝ𝒅 

𝒉 ∈ 𝓗



𝑖

𝑑

𝓌𝑖𝑥𝑖 > 𝑡ℎ𝑒𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ⟺ 𝑦 = +1



𝑖

𝑑

𝓌𝑖𝑥𝑖 < 𝑡ℎ𝑒𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ⟺ 𝑦 = −1

= 𝓌1 𝑥1+𝓌2𝑥2 + 𝓌3𝑥3+𝓌4𝑥4

= 𝓌1𝐴𝑔𝑒+𝓌2𝑆𝑎𝑙𝑎𝑟𝑦 + 𝓌3 Res+𝓌4 debt



Components of learning
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𝑖

𝑑

𝓌𝑖𝑥𝑖 > 𝑡ℎ𝑒𝑟𝑠ℎ𝑜𝑙𝑑 ⟺ 𝑦 = +1



𝑖

𝑑

𝓌𝑖𝑥𝑖 < 𝑡ℎ𝑒𝑟𝑠ℎ𝑜𝑙𝑑 ⟺ 𝑦 = −1

ℎ 𝑥 = 𝑠𝑖𝑔𝑛 

𝑖=1

𝑑

𝓌𝑖𝑥𝑖) + 𝑏 𝒉 ∈ 𝓗

Where b : threshold

ℎ 𝑥 = 𝑠𝑖𝑔𝑛 

𝑖=1

𝑑

𝓌𝑖𝑥𝑖) + (𝓌0× 1)

ℎ 𝑥 = 𝑠𝑖𝑔𝑛 

𝑖=1

𝑑

𝓌𝑖𝑥𝑖) + (𝓌0× 𝑥0)

ℎ 𝑥 = 𝑠𝑖𝑔𝑛 

𝑖=0

𝑑

𝓌𝑖𝑥𝑖
𝑤ℎ𝑒𝑟𝑒 𝑥0 = 1

= 𝓌0 + 𝓌1 𝑥1+𝓌2𝑥2 + 𝓌3𝑥3+𝓌4𝑥4



Components of learning

ℎ 𝑥 = 𝑠𝑖𝑔𝑛 

𝑖=0

𝑑

𝓌𝑖𝑥𝑖

ℎ 𝑥 = 𝑠𝑖𝑔𝑛 𝓌𝑇𝑥

𝑤ℎ𝑒𝑟𝑒 𝑥0 = 1
Perceptron 

Learning Algorithm 
(PLA)



REGRESSION EXAMPLE: CURVE FITTING (LINEAR MODEL )

Training set (𝑿) : 

{x1,..., xN }  → {0.11,0.22,0.33,0.44,0.55,0.66,0.77,0.88}

Target  vector (𝒕) : 

{t1,..., tN } → {0.1,0.6,0.9,0.89,-0.01,0,-0.95,-0.55…etc}

0.89
0.9

-0.95

-0.55

-0.65

0.010

-0.01

Unknown system

{x1,..., xN } {t1,..., tN } 
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Regression example: Training Phase

0.89
0.9

-0.95

-0.55

-0.65

0.010

-0.01

Training Phase (Learning Phase):

𝑦 𝑥  𝑓𝑖𝑛𝑑 𝑜𝑢𝑡 𝑦(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡)

Unknown 

system

{x1,..., xN } {t1,..., tN } 

Implicitly trying to discover the underlying function sin 2𝜋𝑥 .

{x1,..., xN } {𝑦 1 𝑥1  ,…, 𝑦 𝑁 𝑥𝑁  }ML algorithm
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Regression example: Training Phase

0.89
0.9

-0.95

-0.55

-0.65

0.010

-0.01

Training Phase (Learning Phase):

𝑦 𝑥  𝑓𝑖𝑛𝑑 𝑜𝑢𝑡 𝑦(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡)

Unknown 

system

{x1,..., xN } {t1,..., tN } 

Implicitly trying to discover the underlying function sin 2𝜋𝑥 .

Error function : 

{x1,..., xN } {𝑦 1 𝑥1  ,…, 𝑦 𝑁 𝑥𝑁  }

that measures the misfit between the function y(x, w), for 

any given value of w, and the training set data points.

ML algorithm
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Regression example: Training Phase (exploit vs explore)

0.89
0.9

-0.95

-0.55

-0.65

0.010

-0.01

Training Phase (Learning Phase):

𝑦 𝑥  𝑓𝑖𝑛𝑑 𝑜𝑢𝑡 𝑦(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡)

Unknown 

system

{x1,..., xN } {t1,..., tN } 

Implicitly trying to discover the underlying function sin 2𝜋𝑥 .

Error function : 

{x1,..., xN } {𝑦 1 𝑥1  ,…, 𝑦 𝑁 𝑥𝑁  }ML algorithm
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REGRESSION 
EXAMPLE: 
EXPLORING
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REGRESSION 
EXAMPLE: 
CURVE 
FITTING
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REGRESSION EXAMPLE: GENERALIZATION

𝑦 𝑥  𝑓𝑖𝑛𝑑 𝑜𝑢𝑡 𝑦(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡)

{x1,..., xN } {𝑦 1 𝑥1  ,…, 𝑦 𝑁 𝑥𝑁  }ML algorithm

{ ො𝑥1,..., ො𝑥𝑁 } 

The ability to categorize correctly new examples that differ 

from those used for training is known as generalization. 

test set

Test Phase 

 (𝐔𝐬𝐞 𝐃𝐚𝐭𝐚 𝐬𝐞𝐭 𝐭𝐞𝐬𝐭 𝐬𝐞𝐭 ∉ 𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒔𝒆𝒕):
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REGRESSION EXAMPLE: 
OVERFITTING

• Regression is: 

• Predict a number

• infinitely many possible 

outputs

Will give good results through training phase and 

very poor  results in testing phase (poor 

generalization. )

20



OVERFITTING CONCEPT (GIVEN DATASET)
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OVERFITTING 
(WHOLE IMAGE)
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OVERFITTING23

Over fitting

For M = 9, the training set error goes to 

zero, However, the test set error has 

become very large



GENERALIZATION (INCREASING DATASET )24
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