
Embedded C  
– 

Traps and Pitfalls 
 

By 
 

Eur. Ing. Chris Hills BSc, C. Eng., MIEE, FRGS 
 

Keil (UK) Ltd. 
 

As presented at  
ESS Conference, Olympia, London   

24th May 2000 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Hitex (UK) Ltd. 
Warwick University Science Park 
Coventry, CV4 7EZ  
Tel. +44 (0) 1203 692 066    
Fax. +44 (0) 1203 692 131  
www.hitex.co.uk 
chills@hitex.co.uk 
 

http://www.phaedsys.org/
http://www.phaedsys.org/
http://www.phaedsys.org/
http://www.phaedsys.org/
http://www.phaedsys.org/
http://www.phaedsys.org/
http://www.phaedsys.org/
http://www.phaedsys.org/
http://www.phaedsys.org/
http://www.phaedsys.org/


   

www.keil.co.uk page 2 of 37  

As presented at the  
Embedded Systems Show and Conference, Olympia, 

London   
24th May 2000 

 
First version presented at 

 
JAva C & C++ conference 
Oxford Union, Oxford UK  

Sept 1999 
For the Association of C and C++ Users, see www.accu.org   

 
The slides and copies of this paper (and subsequent versions) 
and the power point slides will be available at www.hitex.co.uk or  

www.phaedsys.org the authors personal web site. 
Chris@phaedsys.org 

 
This paper will be developed further. 

 
 
 
 
 
 

www.accu.org
http://www.hitex.co.uk/
http://www.phaedsys.org/
mailto:chris@phaedsys.org


   

www.keil.co.uk page 3 of 37  

Contents 

1. Introduction .................................................................................................... 4 

2. C History.......................................................................................................... 6 

3. SW Engineering with C ................................................................................ 7 

3.1. Organise .............................................................................................................7 
3.2. Good  C ..............................................................................................................10 

3.2.1. Style .............................................................................................................................11 
3.2.2. Header files................................................................................................................16 
3.2.3. Magic Numbers .........................................................................................................17 
3.2.4. Flow Control ..............................................................................................................17 
3.2.5. If....................................................................................................................................17 
3.2.6. Switch ..........................................................................................................................18 
3.2.7. Breaking the flow ......................................................................................................18 
3.2.8. Static linkage..............................................................................................................19 
3.2.9. Declaration and initialisation ..................................................................................19 

3.3. How to prove it is Good C ............................................................................20 
3.3.1. Formal Eastern European Writing.........................................................................21 
3.3.2. Hungarian Notation...................................................................................................22 
3.3.3. Formal Methods ........................................................................................................22 

4. Embedded Engineering ............................................................................. 24 

5. Embedded C Engineering......................................................................... 25 

5.1. SIZE MATTERS !....................................................................................25 
5.1.1. Enumerated Types ...................................................................................................26 
5.1.2. One way of NOT decreasing the code..................................................................27 

5.2. Volatile ..............................................................................................................27 
5.3. Const ..................................................................................................................27 
5.4. Register .............................................................................................................28 
5.5. Dynamic memory ..........................................................................................28 
5.6. Libraries. ..........................................................................................................28 
5.7. Tuning Libraries ............................................................................................28 
5.8. Maths .................................................................................................................29 

6. Embedded C++............................................................................................ 30 

7. Conclusion .................................................................................................... 31 

8. Appendix A (style) ....................................................................................... 32 

K&R ...................................................................................................................................32 
Indented  Style ...............................................................................................................33 
Exdented Style ................................................................................................................33 

9. Appendix B Lint and Example Program ................................................ 34 

10. References .................................................................................................... 36 
 



   

www.keil.co.uk page 4 of 37  

 
Embedded C - Traps and Pitfalls 
 

1. Introduction  
 
Back in the bad old days, microprocessor programs were developed in 
assembler and blown into EPROM’s such as 2708's, 2716's.  With 
assembler, it was possible to know exactly what was in the EPROM.  Know 
both in time (cycles) and byte by byte.  Whether it functioned correctly 
was another matter! There was no possible way of knowing what the 
program was actually doing as it ran.  Ingenious methods such as twiddling 
port pins were used to tell where the program had got.   
 
The lucky few had ROM-based monitor programs whereby an array of 
seven segment LED’s and a hex keypad allowed assembler to be single 
stepped and simple execution breakpoints to be set.  In some instances, a 
serial connection to a computer or terminal allowed more flexibility.  There 
were also some very rudimentary software simulators.  An elite few, in the 
richest companies, were blessed with the ultimate tool the In-Circuit 
Emulator (ICE).  However, such was the initial cost and subsequent 
unreliability of some of these early devices, that the ICE were often ditched 
in favour of good old monitors.  The one-thing emulators did have in 
common with monitors was a strong assembler-orientation. 
 
SW development systems were, to say the least, were basic.  Many things 
now taken for granted were not possible.  Colour syntax highlighting for 
one. 
 
With great persistence and not inconsiderable brainpower, workable 
programs were produced.  Whilst assembler is often specific to a 
particular micro many programs required the same services, serial comms 
for example, for this reason people developed libraries.  Re-use was 
around long before C++!  
 
Embedded systems moved from assembler to C.  There were other 
languages such as PLM, Forth, Mod2 and Pascal but C is by far the most 
common, most versatile and well known.  Apparently, C is used in around 
85% of embedded systems with assembler used in around 75%.  The 
assembler would be used in many C systems where accurate timing is 
needed and for things like drivers.  There are fewer assembler only 
projects these days.  Other languages are used but these rarely get over 
10% market penetration.  
 
If used properly, C is as robust and safe as any other high level language.  
That bears repeating: C, when used correctly, is as safe and robust as any 
other HLL [Hatton]. 
 
As a spin off from the wide spread use of C in embedded systems there are 
many support tools, simulators, monitors and ICE that now support C 
source level debugging.  This makes C an even more efficient way of 



   

www.keil.co.uk page 5 of 37  

producing embedded systems.  I have been told that the C compiler is the 
most understood (and heavily tested) software on the planet.  This in its 
favour. 
 
Unfortunately, the History of C works against it.  It is seen as a hackers 
language and has a reputation as a read only language.  Part of this is due 
to the obfuscated C competition to produce the most unreadable and 
tortuous, but fully legal, C program. I did have C program that as a single 
(long) line.  The main() line with an empty pair of braces{}. It would (with 
out a word of the text visible in the program) compile and print out to 
screen the whole of the 12 days of Christmas from the very strange 
executable parameters! 
 
The other problem is that, just as everyone thinks they can write a book 
many think they can write a C compiler or debugger.  Unfortunately, this 
means that there are also a lot of poor quality tools out there.  Choose 
wisely. 
  
As an example, I was once asked to set up (for a UK University) a cross 
compiler.  It was a PC hosted Modula2-68K compiler.  However, upon 
trying to install it I ran into problems.  The compiler, it turned out, had 
been written in assembler.  The company who produced it had virtually no 
documentation other than the users manual.  There was no test suit or proof 
of testing.  As the programmer had left the company (and the country), 
they were not able to help at all. 
 
Thus, a cross compiler for safety critical use with a “safe” language (Mod2) 
was in fact a totally unsafe piece of software.  Had I got the compiler up and 
running the University would have had no idea how unsafe the underlying 
construction was.  It would have been used on several safety critical 
projects because Mod2 was a safe language.   
 
There are many more C tools out there than Mod 2 ones.  Therefore, there 
are likely to be much more poor quality C tools out there.  So, be careful.  
Make sure of the pedigree of any embedded development tools you buy.  
As any mechanical, civil, aeronautical or electrical Engineer will tell you: 
 

It is well worth buying good quality tools. 
 
 
For this paper, I am only interested in the production of good C source 
code.  I am not looking at how you got your design, CASE tools, how the 
teams were organised or anything of that nature.  This is largely because 
the majority of embedded systems are on the small side and do not warrant 
CASE tools.  
 
 



   

www.keil.co.uk page 6 of 37  

2. C History 
 
The problem with C is its history.  I do not propose to re-tell “The K&R 
Story”  [K&R] here however there are some parts pertinent to this paper 
[Ritchie].  I recommend that people read the paper by Dennis Ritchie 
[Ritchie] this is available from his web site: 
 http://cm.bell-labs.com/cm/cs/who/dmr/index.htm.  
 
C was developed initially (between 1969 and 1973) to fit in to a space of 8K.  
Also C was designed in order to write an operating system.  Unlike today, 
operating systems had to take up as little space as possible, to leave room 
for applications.  This makes it idea for embedded systems. 
 
C was developed from B and influenced by soup of several other 
languages. Interestingly  BCPL, from which B was developed used // for 
comments just as C++ does! 
 
One of the problems with C is that now the majority of people learn C in a 
Unix or PC environment with plenty of memory, disk space, native 
debugging tools and the luxury of a screen, and keyboard.  
 
Because C was designed  for operating systems it can directly manipulate 
the hardware and memory addresses (not always in the way expected by 
the programmer).  This can be very dangerous in normal systems let alone 
embedded ones! 
 
C  permits the user to do many “unorthodox” things.  A prime example is 
to declare 2 arrays of 10 items A[10]  and B[10]. Then “knowing” that they 
are placed together in memory use the A reference “for speed” step from 
A[0] to A[19]. This is the sort of short cut that has got C a bad name. 
 
The syntax of C and its lint with UNIX (famous for its terse commands)  
means that many programmers try to write C using the shortest and most 
compact methods possible. This has led to lines like:   
 
 while (l--) *d++ = *s++; 
 
or  
 typedef boll (* func)(M *m); 
 
 
This has given C the reputation for being a write only language and the 
domain of hackers. 
 
As C was developed when computing was in it’s infancy and there were no  
guidelines for SW engineering. In the early days many techniques were 
tried that should by now have been buried.  Unfortunately, some of them 
live on. 

http://cm.bell-labs.com/cm/cs/who/dmr/index.htm


   

www.keil.co.uk page 7 of 37  

3. SW Engineering with C 
 
As I and others [Hatton][Misra] [COX] have said, when used properly, C 
can be as safe as any other High Level Language.  For embedded use there 
are some additional things one must think about.  This paper, in looking at 
embedded C, will also cover many things that will be of use in general C 
programming.  
 
As mentioned in the introduction I am only looking at the production of 
safe, robust C source code.  How you got your design, pencil and envelope 
(50p) or CASE tool (£5,000) is not relevant here.  Neither is the design 
method thought there should have been one. 
 

3.1. Organise  
 
First, organise your files.  Both the code files and documentation.  Version 
Control (or Revision Control System, RCS) has been around for many 
years, yet large number of engineers still do not use it.  There are basic 
RCS/SCCS systems that run on a one machine one user basis up to the 
systems that can track files across linked networks round the world.  
 

 
What is VCS?  It is basically a database 
that will hold all the versions of a file.  
Thus when bugs are fixed or other 
changes made to a file both the original 
and the new versions can be stored and 
retrieved.  Most VCS systems permit the 
labelling of file version and the ability to 
retrieve all files associated with a label.  
Usually multiple labels can be assigned 
to a file. Thus a standard module can be 
used in several projects. 
 

 
When linked with a make 
system it gives the ability to 
“make Release_1”.  
 
VCS means that you never 
loose a file and can recover any 
version of a file and therefore 
create any version of the 
software.  
 
This can be very useful when 
major changes are added to a 
file for the wrong reason and 
need to be removed. 



   

www.keil.co.uk page 8 of 37  

 
The other very good use of VCS is that it permits developers to get on with 
the next version without affecting the current builds.  IE one can set up the 
VCS to let the test team to get the version of the file released for testing.  
Then there is the choice of fixing the bug in the version the developer is 
working on or branching the file to give another copy (still tracked by the 
VCS and linked to the original file).  Most VCS systems permit the merging 
of branches later.  This is usually a semi-automatic procedure.  
 
VCS also stops two people accidentally working on copies of the same file.  
It usually requires several intentional acts to get a second write-able copy 
out and several more intentional acts to check it back in in-place of the 
original version pulled out.  It is, of course, fully logged and the files can all 
be recovered. 
 
Many modern C development systems have hooks in them to interface to 
the VCS systems so that once set up they become transparent to the 
developers.  Due to automatic time and date stamping in VCS systems, no 
matter how slack you, or some one else gets, you should be able to, this is 
the part ISO 9000 people like, show a complete audit trail from the day the 
file was created.  
 
VCS systems cover all sizes of project.  I have seen an extreme case where 
a very large embedded project consisted of several linked systems 
produced by a couple of hundred engineers across 9 sites in 4 countries.  
The VCS system  (Clearcase from Pure Atria) could not only track all the 
files but also synchronise all 9 of the databases automatically.  This meant 
that all the developers and testers  were always working on the correct 
(but not necessarily the latest) versions of software.  This system was able 
to cope with two changes of target CPU architecture!  All the reusable Sw 
modules were kept and moved (with their history) to the “new” project. 
 
At the other end I have used a simpler system (PVCS from Intersolve) that I 
found to be very useful on a single machine (or small networks) running 
one or several projects.  The PVCS suite can also integrate make and bug 
reporting to full ISO9000 and CMM requirements.  
 
These systems do cost money and take time to set up, but are worth their 
weight in gold when a customer wants a mod done to a project you last 
worked on 2 years ago.  The other nightmare scenario is where the 
customer wants a mod and the code has since modified the code for 
something else…. 
 
So, we now have a project where we have organised files where we can get 
at any version and easily build any version of the system.  Incidentally, this 
also helps with testing as test scripts can be held in the VCS in the same 
way and any test suite rebuilt.  The only thing to watch out for is these 
systems store deltas of text files. Most let you baseline and start a new set 
of deltas but for the storage of non-ASCII files they usually make complete 
copies.  This takes up a hell of a lot of disk space so be warned! 
 
 



   

www.keil.co.uk page 9 of 37  

What we now need is something in the files we have organised. 
 
 
Before leaving the RCS completely there is one last point that goes into the 
next section.  The RCS systems can usually insert into the source files things 
like current version, change log, file names, paths to archive, author etc.  In 
the example shown (PVCS)  it is the text between the “$” delimiters.  This 
insertion is automatically done by expanding these keywords.  In this 
example the whole history block after the $log is also added automatically. 
 
This automatic insertion means that a simple template is all that is needed 
for modules.  The developers do not need to complete it, well only the odd 
line, as the VCS system does it for them. 
 
In the example below the file name, author, revision, and history log are 
automatically inserted.  So even with the tardiest of developers an ISO9000 
audit trail is automatic.  As the log uses the login name specific to the user it 
will be obvious who did not correctly complete the header block. 
 
 
/******************************************************* 
** $Workfile:   U1CO0001.C  $ 
** Name: Application Block 
** Copyright :Keil (uk) 1999 
** $Author: Chris Hills$ 
** $Revision:   1.1  $ 
** 
** Analysis reference:123/ab/45678/001 5.6 
** Input Parameters:  NONE  
** Output Parameters: NONE  
** 
** $Log:   C:/ENG/KOS2/A2C001.C_V  $ 
** 
**   Rev 1.1   06 May 1998 16:48:28   HILLS_CA 
**Issued for review  
** 
**   Rev 1.0   01 Apr 1998 13:09:02   HILLS_CA 
**initial version 
** 
*/ 
 
 
 
 
 
/**********  End of $Workfile:   U1CO0001.C  $  *************/ 
 



   

www.keil.co.uk page 10 of 37  

 

3.2. Good  C 
 
Now having organised all the files we need “Good C” in them.  What is 
good C?   
 
It must not contain errors  
It must perform as expected. 
It must be repeatable 
It must be readable (so people can see what it is doing) 
 
These seem simple enough and may at initially appear to overlap.   
 
Firstly, the C should not contain any syntactical or semantic errors.  This is 
not always as obvious as one might think.  Syntactical errors the compiler 
picks up but semantic ones can be far more subtle.  They can also be a lot 
more difficult and time consuming to find if left to the test and debug phase 
to find.  These should be found as the source code is written using static 
analysis, not the compiler.  The compiler should always be set to the 
highest level of warnings. 
 
After the syntactic and semantic errors are removed does the code it do 
what you expect?  It is of no use having a technically correct program that 
does the wrong thing!  This is usually the case of understanding the 
requirements or quite often things like testing for “greater than” when it 
should have been  “equal or greater than” This can usually only be found 
by visual inspection (code review) and thorough white box testing.  For 
catching errors during code inspections, the code needs to be readable. 
This is something I will return too later.  
 
Repeatability is one thing that is often overlooked when testing software.  
Most software (and embedded in particular) often has to perform the same 
tasks many times, sometimes for years on end.  I have used a program that 
ran well for a while (3 months).  It then crashed but after a reset, it ran 
again (for about 3 months).  It was, under some situations, over writing 
buffers.  Unlike desktop PC’s embedded systems have to be reliable as 
they do not have a ctrl-alt-del.  Also, embedded systems often control 
machinery.  Malfunctions in robots making cars in Japan killed 6 people in 
one year! 
 
The last point on the list is that if you can’t easily read the code you will not 
be able to check for errors and the correct running of the code.  There are 
two parts to this firstly the code should be using the correct constructs in a 
safe manner.  The best place to start is with the international standards and 
then the industry specific ones.   In this case the international standard is 
ISO C. (Not ANSI which is a local USA standard). A de-facto standard for c 
usage is the book “C Traps and Pitfalls” by A Koenig.  I will look at the 
embedded parts of C later.  Secondly, to be easily readable the source 
needs to be uniform in appearance.    
 



   

www.keil.co.uk page 11 of 37  

You may well (or at least I hope so) agree with the first part of the last 
paragraph but may disagree with the last line.  Many people do not like to 
be told how to lay out their code.  Many see it as an infringement of their 
civil liberties.  However, sw engineering is a branch of engineering not a 
mystical science! 
 
 

3.2.1. Style  
 
It is easier to count a group of people if they are standing in lines of 5 and 
blocks of 25 than if they are just standing in a group.  Likewise when the 
source code is laid out is a standard way is it far easier to spot anomalies 
and errors.  
 
As one of my team one said to me in an email after doing a review on 
another teams code:- (N.B. time how long it takes to read what this says) 
 
th eo   t 
her  tea  mRe        Gua 
R  d   so  ru    c 
E   Co      DeLay  
O   T  A     Sana 
Rtf  or     M 
 
It took me a while to work out what it actually said was:-  
ThEoThErTeAmReGuArDsOrUcEc0DeLaYoTaSaNaRtFoRm 
 
Sorry, I meant “theo tert eamr egua rdso ruce code layo tasa nart form” or to restrict 
my civil liberties and stifle my creative spirit; “The other team regard source 
code layout as an art form”.  I am sure that you instantly spotted the ‘0’ (zero) in 
place of the O and the misspellings.  In fact now I come to look at it, the first 
3 versions have different errors but I am sure that was obvious to you! 
 
The illustration above should have convinced you that a uniform style to a 
set convention is a good idea. 
 
There are many style guides about.  Have a look on the internet or create 
your own. Which ever you use do so consistently.  NOTE:- (and this is 
important) Style is about readability. It is easier to spot mistakes if 
something is easy to read.  Style guides are not about safe code as such or 
safe subsets of C. 
 
We now have a religious style debate as to where to put the braces.  There 
is no “true faith”.  Any system will do as long as you stick to it!  Some of the 
more common are styles are; 

3.2.1.1. (K&R) 
If( xyz){ 

statement 
 statement 

} 
 



   

www.keil.co.uk page 12 of 37  

 

3.2.1.2. (Indent) 
if(xyz) 

{ 
statement 
statement 
} 

 

3.2.1.3. (Exdented) 
if(xyz) 
{ 

statement 
statement 

} 
 
A fuller description of each is given in appendix A.  Personally, the 
exdented is my preferred style but some of the older debugging tools 
require the first style.  
 
The only thing I insist upon for braces is that they are used wherever they 
can be used.  This is especially important on things like if clauses for 
example 
 
interlock = OFF; 
 
if(TRUE == stop) 
 flag = ON; 
 interlock = ON; 
 
if(ON == interlock) 
 open_doors(); 
else 
 apply_breaks(); 
 sound_alarm(); 
 
 
This will, obviously, always open the doors and sound the alarm but not 
apply the breaks.  What it should do is only open the doors if stopped else 
apply breaks and sound alarm but not open doors. 
 
I insisted that all code produced with teams I am involved with rigidly 
adhere to the principal of always using braces were possible.  This may 
sound a bit draconian but I have good reason.   
 
I instigated this rule after three of the team spent two days trying to trace a 
bug caused by a two line if statement where only one line was actually 
inside the if.  It caused an error some distance from the if statement and 
was not immediately linked to the problem.  When the if statement was 
considered all three engineers glancing at it saw a correct if statement and 
mentally put braces round the two statements.  The mind saw what it 
thought should be there. The error was combined with another similar 
“non error” to produce a real problem much further away. 
 



   

www.keil.co.uk page 13 of 37  

The previous code example (according to my pedantic formatting) is 
actually the following: 
 
interlock = OFF; 
 
if(TRUE == stop) 
{ 
 flag = ON;   
} 
interlock = ON; 
 
if(ON == interlock) 
{ 
 open_doors(); 
} 
else 
{ 
 apply_breaks(); 
} 
sound_alarm(); 
 
 
Whereas what was meant was: 
 
interlock = OFF; 
 
if(TRUE == stop) 
{ 
 flag = ON;  

interlock = ON; 
} 
 
if(ON == interlock) 
{ 
 open_doors(); 
} 
else 
{ 
 apply_breaks(); 

sound_alarm(); 
} 
 
 
This is actually based on a real problem on a rapid transit system in the far 
east….. written by programmers in the Midlands! It actually made it as far 
as the test runs.  It was only found by accident after a carriage broke down 
and the test train ran with one fewer carriages than normal. 
 



   

www.keil.co.uk page 14 of 37  

 

3.2.1.4. Information blocks and comments 
 
Comments, or the lack of, are one of the most hotly argued things after 
where to put the braces!  Each file or module should have an information 
block.   
 
/******************************************************* 
** $Workfile:   U1CO0001.C  $ 
** Name: Application Block 
** Copyright :Keil (uk) 1999 
** $Author: Chris Hills$ 
** $Revision:   1.1  $ 
** 
** Analysis reference:123/ab/45678/001 5.6 
**   
** Input Parameters:  NONE  
** Output Parameters: NONE  
** 
** $Log:   C:/ENG/KOS2/A2C001.C_V  $ 
** 
**   Rev 1.1   06 May 1998 16:48:28   HILLS_CA 
**Issued for review  
** 
**   Rev 1.0   01 Apr 1998 13:09:02   HILLS_CA 
**initial version 
** 
*/ 
 
This is an example that was used in a project under ISO9000.  Some of the 
significant points are the Analysis reference to tie the source to the design 
and the history log. This should give the developer all the information on 
where the file started and who it got to it’s current state.  The history block 
in this case is automatically put in by the VCS.  Where a VCs is not used it 
should be manually maintained. 
 
Each function should also have a simple comment block giving the purpose 
of the function, the input and output parameters.  Like the main file 
information block, where appropriate, the reference to the design or 
requirements should be included. This may sound like a lot of extra work 
but I have found that it makes one focus on why the function is there.    
 
/************************************************************************************** Convert_One */ 
/* Name: Convert_one 
** 
** Purpose: Converts Faranhit to Celsius 
** 
** Input Parameters 
** Return Parameter 
** 
*/ 
 
The complexity of the function block can be adjusted from a standard 
template to suit the function.  A simple function to add two numbers and 
return the answer will need less than a function that manipulates several 



   

www.keil.co.uk page 15 of 37  

parameters and outputs to (or in puts from) a peripheral.  It is a moot point 
if the function comment block should or should not contain all the 
information on the algorithms etc used in it.  This will depend on how good 
your documentation is.  Hopefully a reference to the design document is all 
that is required.  The only time I put (almost) as much comment in the code 
as code was when the source had to be self documenting as it was going in 
to the public domain without any other supporting documentation. 
 
The one thing I do find useful is at the start of each function to have a single 
line comment full width on the page with the function name at the right 
hand end. This makes finding functions easy when scanning listings.  
 
The biggest controversy is where to put comments in the source (if at all).  
Someone asked the question “where should I put comments in a program“ 

recently (August 99) on one of the 
C news groups on usenet.  The 
thread attracted an order of 
magnitude more replies than any 
other (except the one whether 
C++ was suitable for embedded 
use). I scanned the thread but 
there was no clear winner or 
consensus.  The  suggestions 
went from commenting every line 
to the idea that well laid out code 
needs no comments at all.  
 
The answer is somewhere 
between the two.  I use 
Development Assistant for C. This 
can take source code and 
automatically produce metrics 
and flow charts.  The structure of 
the flow chart comes from the 
source, the analyser reads the if, 
switch, do while clauses etc.  
However the program takes the 
comments in the code to put in 
the boxes of the flow chart.  I use 
this program as a guide to where 

I need comments.  The rule of thumb is that comments should be 30% of the 
file.  This figure is only a guide.  Comments should be used to make the 
source readable by another person not the original developer. 
 
The only strict rule is that comments should not be nested.  As an extension 
of this code should not be commented out because it could contain 
comment blocks.  Also  commented out code is confusing and can be, due 
to the was C nests comments, not the commented out block the developer 
thought it was. 
  
All comments should use the /* */ pair not the c++ style of //.  This is 
because not all  C compilers support the C++ style even if BCPL did!  

code

read
character   

true

false
if

decrement
count       

and line
pointer     

echo
backspace   

true

false
process

backspace   

ignore
Control S/Q 

echo and
store

increment
line pointer

and count   

true

falseif

true false
if

true

false

check limit
and line
feed      

mark end of
string      

getline
Line Editor 



   

www.keil.co.uk page 16 of 37  

3.2.2. Header files. 
 
Header files contain all sorts of things such as defines, macros, and function 
prototypes that are required in several files.  The standard libraries have 
header files that are usually included.  These are included into the source 
using the #include directive.  This is a straight textual insert.  What can do 
wrong?  Lots of things 
 
Header files should not be nested.   
 
Nesting hides files.  On one project I worked on in one file there were 8 
include files.  However, these files had nested files.  When I unravelled, the 
nested headers there were over 120 included files.  This included 8 files 
ten times!  The interesting point was that when the duplicates were 
removed the source file would not compile!  It appeared that due to some 
problem no one could be bothered to find three of the files had to be 
included twice.  Once at the start of the includes and once at the end.  This 
was masking a serious problem. 
 
For example something may be defined in one header, turned off in 
another and as the two get repeatedly included parts of the overall 
included files will have the define in and others not. This can have some 
very strange , and almost impossible to find effects.  
 
In order to make sure only one of each header is ever included guards 
should be used. These guards take the form: 
 
#ifndef name 
#define name 
 
header file contents 
 
#endif 
 
Generally for name I use the name of the header file. 
 
An additional tip is to always include header files in the same order.  I 
usually start with system headers at the top. 
  
Incidentally when putting macros into headers use parenthesis 
enthusiastically. To ensure there are no silly side effects. I.e. the macro is 
self-contained.  Macros should only really be used for constants and 
function like macros.  Using a macro for something like : 
 
#define STARTIF  IF(  
 
should be avoided 
 
 
 
 



   

www.keil.co.uk page 17 of 37  

3.2.3. Magic Numbers 
 
Defines & magic numbers.  I hope I do not need to tell people not to use 
magic numbers, #defines or const should be used.  The advantage of using 
const is that it will be visible in debuggers.  The disadvantage is that it will 
actually take up space in ROM or RAM as a (const) variable. 
 
So whilst const is preferable technically, pragmatically #defines may be 
better in 8 bit systems like the 8051 where RAM is at a premium..  
 
  

3.2.4. Flow Control  
 
Controlling the flow of a c program has always caused problems.  People 
always tend to take the shortest route.  It has already been mentioned that 
IF clauses should always use the braces {} even when there is only a single 
statement.  This holds true for while statements as well: 
 
while(a<count) 
 a++ ; 
 
 
is potentially dangerous. It should always be written: 
 
 while (a<count) 
 { 
  a++; 

} 
 
 

3.2.5. If 
Something I have found effective in tests for equality if to have the fixed or 
constant value on the left.  The variable on the right.  This causes an error if, 
inadvertently, the test for quality is inadvertently changed to an 
assignment.  For many years, I have writtten 
 
 if(constant == variable) 
 
This is counter intuitive and does take a while to get used to.  However, it 
does stop many silly errors.  Though with a good compiler and rigorous 
use of lint any errors of this type should be picked up whichever way it is 
done. 
  
Logic is one of the problems when using if with else.  Where if else if  is 
used there must always be a final else clause.  This should be done even 
when the final clause will be empty!  A comment should be placed in the 
final else to say why it is empty. 
 
If( Clause) 



   

www.keil.co.uk page 18 of 37  

{ 
 statement; 
} 
elseif(clause) 
{ 
 statement; 
} 
else 
{ 
 statement; 

/* or comment*/ 
} 
 
This makes it clear why the clause is empty and makes the developer think 
about the structure of the whole construct. 
 
 

3.2.6. Switch 
 
Switch statements are completely straightforward, what can go wrong?  
Lots of things can go wrong!  All switch statements must have a default 
clause.  If there is no default action put an error message in there.  This 
saved a lot of grief more than once when (completely unexpectedly) the 
error message showed up!  Break should be used to terminate each case.  
 
Switch(variable) 
{ 
 case 1: statement; 
  break; 
 
 case 2: statement; 
  break; 
 

case  3: 
case  4: statement; 

  break; 
 
 default: 
  printf(“ERROR!!!\n”); 
  break; 
} 
 
Notice the break on the default.  Always a good idea just in case the default 
becomes a case.  
 
 

3.2.7. Breaking the flow 
 



   

www.keil.co.uk page 19 of 37  

In a word don’t. Break should only be used at the end of every case  and 
default clause in a switch statement and no where else. 
 
Goto….. This needs no comment as it should never be used.  Neither 
should continue. 
 
Whilst on the subject of jump out of a flow it is a moot point whether there 
should be a single point of exit from a function.  Many say there should only 
be return.  Others say that for readability and sensible flow in a function 
more than one is better.  I have seen cases where the function contained 
some horribly complex if else if, constructs in order to get one return line 
whereas it was far cleaner, elegant, shorter and faster with several return 
statements. 
 

3.2.8. Static linkage 
 
By implication, all functions are externs.  However, where a function is only 
called within the module it is in it can be made static.  This has a couple of 
uses.   
 
Firstly it makes the code safer in that visibility can only be in the module.  
This means that the function can only be called in the module.  When used 
with static variables declared at file level it makes the variable public to 
only that file.  This rather like the private functions in a c++ class. 
 
Secondly static functions can result in faster code.  This is because the 
compiler knows where the function can be called from.  Generally this will 
be a local, short or relative jump within the file.  This will be tighter and 
faster than a general jump to “somewhere else” out of the file.  For 
embedded use this has the advantage in saving a few bytes per call.  
 

3.2.9. Declaration and initialisation 
 
Variables should be initialised before they are used. In keeping with the 
general rule of explicit rather than implicit variables should be explicitly 
initialised as soon as possible.  The obvious and most sensible time is when 
they are declared. 
 
static int count = 0; 
static signed char  letter =’a’; 
 
This ensures that all variables are initialised.  Variables should always be 
declared initialised at the start of a file or function. 



   

www.keil.co.uk page 20 of 37  

 

3.3. How to prove it is Good C 
 
When “The Gods”  [K&R] gave the world C and the world bathed in the 
brilliance of the language it rather overshadowed another program that 
“The Gods” had left for the disciples.  Those who know it use it religiously.  
Many, to their cost, leave it by the way side.  What is this program?  Lint.  It 
was first developed from a C compiler engine in 1979 by Steve Johnson 
[Johnson] who was one of the original group that worked on C and UNIX. 
 
In his paper on C Ritche [Ritche] says- “To encourage people to pay more 
attention to the official language rules, to detect legal but suspicious 
constructs, and to help find interface mismatches undetectable with simple 
mechanisms for separate compilation, Steve Johnson adapted his Pcc 
compiler to produce lint.” 
 
Whilst a compiler will very accurately check syntax it does not worry about 
the semantics as long as they are legal.  Now legal does not mean sensible 
or safe.  A compiler may not care if you want to store part of an int or float 
in to a char.  The fact that it makes no functional sense is irrelevant to the 
compiler! 
 
To give an example from English language.  In a meeting I attended a 
person (who’s first language was not English) said “I have over seen that.”  
What he meant was “I have over looked that.”  The meaning he gave was I 
have personally checked that whereas what he meant was “I forgot about 
it.”  Lint will do much the same sort of thing for C.  
 
Going back to the dubious if statements used to illustrate the need for 
braces: 
 
1 interlock = OFF; 
2 
3 if(TRUE == stop) 
4  flag = ON; 
5  interlock = ON; 
6 
7 if(ON == interlock) 
8  open_doors(); 
9 else 
10  apply_breaks(); 
11  sound_alarm(); 
 
If lint was run over this code it would complain that lines 5 and 11 had 
incorrect indentation.  In fact on PC-Lint it complained: 
 
“Warning 539: Did not expect positive indentation from line 5” 
“Warning 539: Did not expect positive indentation from line 11” 
 
If you refer to the PC-Lint manual it gives an if statement without braces as 
the example!  
 



   

www.keil.co.uk page 21 of 37  

 
Another subtler problem on the same lines, from the lint manual, is: 
 
if(….) 
 if(….) 
  statement 
else 
 statement 
 
The else is in fact part of the second if, not the first.  This is where  a good 
style guide is useful so the code is uniform and  insisting that braces be 
used on ALL if, do and while clauses.  
 
Since lint was developed, there have been great strides in static analysis.  
This is where the analysis of the source code without compiling it or 
running it.  HP has estimated that static analysis and code inspections are 5 
times more efficient than white or black box testing.  Alcatel have said that 
static analysis can reduce a project time by up to 30%, primarily from the 
debugging and fixing stages. The cost of fixing a source code error (other 
than syntax) rises exponentially the longer it it left and the further down the 
development it goes.  Thus the most cost effective way of fixing sw errors is 
at source when the engineer is writing the code. 
 
I use the “write and lint” cycle instead of the more common “write and 
compile” cycle to check the code. 
 
Lint is not the only tool.  It was the first one for C and in keeping with it’s 
Unix/C roots is a simple command line program.  Other heavyweight static 
analysers (that are also vastly more expensive and time consuming to set 
up)  
 
Apart from using lint always run the compiler on it’s highest level of error 
checking. 
 
MISRA-C is a very good set of rules for using C in safety critical embedded 
situations.  PC-Lint has a configuration file to test for as many of the MISRA-
C rules as it possible statically.  MISRA-C also shows how to construct a 
conformance chart. I would recommend this to any developer who needs 
to show “due diligence” or prove that the system has been tested. 
 

3.3.1. Formal Eastern European Writing 
There can not be a discussion on safe C, “proper C” without someone 
bringing in the two methods for producing perfect code.  These methods in 
theory are very good.  They are usually put forward by theoreticians.  Their 
practical use in real sw engineering is another matter. 
 
Both the methods should, in theory, eradicate many errors and mistakes 
but, in my view, create more than they solve.  



   

www.keil.co.uk page 22 of 37  

 

3.3.2. Hungarian Notation 
This is a method were the name of a variable conveys information as to the 
usage and the type of the variable.  This method sounds wonderful until a 
type is changed part way through development.  It also does not help 
readability. There are also several standard notations in use and countless 
local ones.  This breeds confusion.   
 
 
An example of Hungarian notation from Steve Mconnells Code Complete. A 
book well worth reading 
 
For(ipavariable = paFirstvariable; ipavariable <= paLastvariable; ipavariable) 
{ 
 
} 
 
further examples: 
ch     a variable containing a character 
ach   array of ch 
ich   index to an array of ch 
ichMin  indest to first character in array 
ppach  pointer to pointer to array of ch 
 
mhscrmenu   
 m   module level 
    h handle 
      scr   to a screen region 
 for a menu 
 
This is logical BUT I have found that these methods usually cause far more 
trouble they are worth.  There appears to be no general standard.  After 
you learn, one some one changes it.  I have seen a project where it was 2 
weeks before the team discovered that some of the team, whilst using the 
same letters were using them to signify different things to the rest of the 
team! 
 

3.3.3. Formal Methods 
Formal methods are a almost a mathematical way of describing a program.  
They are NOT a programming language though there are some 
interpreters for at least two of the languages (Z and VDM)  
 
The problem is that there are two interfaces.  One takes the specification 
and turns it into Z or VDM and at the other side the conversion from the 
formal method to the programming language of your choice.   
 
The interesting thing is that due to the absolute certainty of people in these 
methods it can cause problems.  Folk history has it that a well known CPU 
vendor used formal methods in its chip design, for the microcode.  When 
several thousands of these chips were produced (at a cost that could 



   

www.keil.co.uk page 23 of 37  

bankrupt many companies even now) they were shocked to discover a 
bug!!! 
 
It transpired that an error was introduced in the translation between the 
requirements and the formal methods.  The formal methods were OK as 
was the translation to silicon.  The problem is that it is generally the 
mathematicians who like the formal methods.  
 
What do formal methods look like?  This is VDM 
 
Max(s:X-set)r:X 
Pre s ≠ {} 
Post r ∈  s ∩∇  j ∈  s.r ≤ j 
 
This is a function to find the largest element in a set.  I have managed most 
of it as even with the might of Windows 95 and Word 97 I do not have all the  
correct symbols! 
 
As I said, wonderful in theory (especially among mathematicians ) but a 
nightmare in practice. 
 



   

www.keil.co.uk page 24 of 37  

4. Embedded Engineering 
 
Embedded Engineering whilst having many similarities with “ordinary” 
SW Engineering is different.  Different that is to “ordinary” SW 
Engineering and every other embedded project.  Whilst embedded 
systems share many similar attributes no two are the same. 
 
In general, embedded systems tend to be single task.  Albeit that the 
larger systems may have an operating system and many processes 
running.  They usually have to meet deadlines that are far tighter than 
general-purpose systems.  This is because they often have to react to 
inputs that are  measured in microseconds not seconds or minutes. 
 
Another difference that is crucial is that embedded systems are usually 
built to a minimum cost with little or no room or even facility for any 
expansion.  That is unlike the desktop PC the resources such as memory 
are cut to the minimum required for the job and sometimes .  This is 
because, usually, the embedded system is a small part of a larger system.  
The control system is ancillary to the main function of the system for 
example a microwave cooker.  If additional recourses are added the cost of 
the product goes up or the profit goes down.  
 
The problem, for the programmer, is that often memory saving techniques 
have to be used.  However the most dangerous problem is memory leaks. I 
once worked on a comms system where a series of line connections caused 
a byte of memory to be lost. One of the engineers did some calculations 
and worked out that the unit would fail in 2 to 4 years of use. The other 
problem was that depending on usage that the unit had the failure 
symptoms could be wildly different.  The unit had a lifetime of 10 years and 
many units would be in remote sites. 
 
There is one other very important aspect of embedded systems they tend 
to be used with mechanical equipment that moves.  Whilst not all 
embedded systems are safety critical many are.  The others will cause 
problems if they fail that are usually more of a problem than having to 
reboot a PC 
 



   

www.keil.co.uk page 25 of 37  

5. Embedded C Engineering 
 
Now we have reached the significant part.  However, this section will be 
surprisingly shorter than many people expect.  I hope that it will only be a 
surprise to those who have skipped the previous sections.  Good SW 
Engineering practice and good Embedded Engineering Practice should 
result in the correct approach for Embedded C!   There only a few 
additional tweaks needed for embedded C. 
 
Just as there are good style guides for C there are useful guides for a safe 
subset of C for embedded use.  Note: This is NOT a style guide. 
 

The de-facto standard is MISRA-C  [MISRA].  This was   
originally developed for the automotive industry.  
This industry uses 8, 16 and 32 bit processors from 
many families.  Thus, the guide is suitable for 
virtually any embedded system which is why it has 
gained wide spread acceptance across the 
embedded world. Coupled with a good style guide 
MISRA-C will help you produce robust and safe C. 
PC-Lint now has a configuration file to test for many 
of the rules (it is not possible to test for all 127 rules 
statically. 
 

A style guide, MISRA-C and PC-Lint between them should let you produce 
embedded C code that is safe, robust and readable.  What more could you 
ask for? You will find most of the points covered in the following section in 
MISRA-C and the PC-Lint Manual. 
 
 

5.1. SIZE MATTERS ! 
 
 
As stated previously embedded systems tend to be of fixed size fore the 
lifetime of the item.  In addition, memory and resources cost money.  
Memory tends to be the most expensive component in an embedded 
system.  Designing in the additional chip, tracking the larger board that 
will cost more to make all add to the costs.  In many cases a single chip 
MCU is required (due to space and costs) therefore the memory available 
will be physically fixed.  Space is expensive and restricted  so make good 
use of it. 
 
I know of one project where there was a white board where the memory 
available was displayed down to the last bit!  (This was a specialist system 
where only a specialised purpose built MCU could be used.)  There was 
actually bartering between the developers for the memory. 
 
Memory usage can be decreased by several ways. 
 



   

www.keil.co.uk page 26 of 37  

Use appropriate sizes of data types.  This may sound obvious but it is 
surprising how many people make incorrect assumptions.  I have been told 
that short is more portable than an int and that a short is always 8 bits.  
Neither statement is correct.   
 
Typedefs should be used for the size of data the types.  Furthermore, all 
types should be explicit not implicit.  By which I mean that there should not 
be a “char” but either an unsigned char or a signed char.  Do you know, off 
the top of you head, if your compiler defaults to signed or unsigned char? 
 
I use the typedefs shown below.  Note I have not used “int” in any of the 
names.  This is because much of the time it is a container for data rather 
than an integer.   
 
typedef unsigned char  U8; 
typedef signed    char  S8; 
 
typedef unsigned int   U16; 
typedef signed     int S16; 
 
typedef unsigned long  U32; 
typedef signed    long  S32; 
 
These typedefs are placed in a short universal header that is included in all 
files.  Short should only be used where it is larger than a char and smaller 
than an int.  For example: 
 
Char = 8 bits 
Short  = 16 bits 
Int  = 32 bits 
Long  = 64 bit 
 
The use of lint with strong type checking enabled will cause warnings to be 
issued where one type is assigned to another even if the underlying type 
for both is an int.  
 

5.1.1. Enumerated Types 
 
Another place where space is wasted is in enumerated types.  The ISO 
standard says that an enum is 16 bits.  This can waste a lot of space on 8 bit 
systems where there are the enum only has a few values.  There are several 
ways round this.  Some 8 bit compilers will use a char to hold enums where 
possible.  Another way is to use #defined values.  This can also speed 
things up on 8 bit systems as the define and the 8 bit emun both fit in a 
char.  Manipulating chars is much faster than 16 bit data on an 8 bit system. 
 
The use of lint can improve memory use.  When used across all the files in a 
project lint can pick up globals that can be declared as locals, variables 
public to a module that can be local and unused variables. 
 



   

www.keil.co.uk page 27 of 37  

5.1.2. One way of NOT decreasing the code  
 
If( get( start +offest1 + calc_offest(start+offset2)) 
{ 
code statements; 
} 
 
This will generate almost the same code as 
 
temp1  = start + offset1; 
temp2  = start + offset2;  
temp2  =  calc_offset(temp2); 
temp1  =  temp1 +temp2; 
temp1 = get(temp1); 
 
if(TRUE == temp1) 
{ 
code statements; 
} 
 
 
In this case, one compiler I tested this on the difference was 4 bytes.  Whilst 
I have said that saving even 4 bytes is a good idea in this case it is not.  This 
difference can depend on how the compiler does temporary variables at 
the point in question. This depends on the compiler, the architecture of the 
MCU and what  else the program is doing prior the point in question. 
 
The difference in source layout is that using a source level debugger or 
ICE can stop on each line to the second example and look at the temp 
values.  In addition, each stage of the calculation of temp1 can be checked.  
With the first example, all that happens is that whole line appears to be 
executed in a single step.  One can of course drop in to assembler to step 
through but that breaks the flow of debugging and the whole point of a 
source level debugger. 
 

5.2. Volatile  
Volatile is a useful keyword for embedded work.  Volatile means to a 
compiler “this could change without the program touching it” this is 
essential in embedded programming.) 
 
I have recently seen a very fast memory test routine. It was so fast because 
the compiler optimised out a variable as it was not being changed between 
assesses. What it did was a memory test without ever touching the 
memory! 
 
 

5.3. Const  
Const should be used where something is not going to change.  One place 
it is very useful is in function parameter declarations.  For example 



   

www.keil.co.uk page 28 of 37  

 
static U8  func( const U8 name, const U8 number); 
 
This will have both the compiler and lint screaming if the function tries to 
change the values.   
 
Interestingly enough it is possible to have a const volatile.  The application 
can not change the const but it will change in between accesses without the 
application touching it. 
 
 

5.4. Register  
Register is often used to speed things up.  However is usually has the 
opposite effect! This is because the compiler is very good at shunting 
things in and out of registers and memory.  Also it is only advisory, many 
compilers ignore it. In those that do not forcing a variable into a register 
could give the compiler problems sorting the other variables.  In the end, 
you get a slower system.  
 
 

5.5. Dynamic memory 
 
The dynamic allocation of memory is a dangerous at the best of times as it 
can lead to memory leaks.  In embedded systems, it could be fatal in a very 
real sense.  Much of the dynamic memory allocation routines are not fully 
specified in the standards and their behaviour (intended or otherwise) is 
dependable.  I have seen a system where a one byte leak in unusual 
circumstances would cause the system to become unstable after 3 years.  
The system had a 10-year life.  
 

5.6. Libraries.   
There are three types of library.  Your libraries and some one else’s 
library.   
 
Your libraries it goes without saying should be constructed to the highest 
standards and thoroughly tested.  
 
When it comes to some one else’s they can be divided into those you have 
source for and those you do not.  Where you have the source, you should 
rigorously lint them, even those supplied with the compiler.  Where 
necessary re-write them.  I have come across libraries supplied with 
compilers in the past that did not survive static analysis!  In fact, the 
produced illegal code under some circumstances. It was discovered by a 
deep flow static analyser. 
 

5.7. Tuning Libraries 
 



   

www.keil.co.uk page 29 of 37  

In the case of some libraries, a module may contain a mixed bag of 
functions.  It may well be worth re compiling the libraries leaving out the 
functions that are not required. 
 
Another thing to look out for is a library with general-purpose functions.  
For example, the printf function is large and complex.  You probably do 
not need much of the function.  It may pay in the end, to write your own 
print function that only handles the formatting that you need.  This will save 
space, improve speed and you know how they work.  It pays to re-do most 
of the functions that can accept variable numbers of parameters. 
 

5.8. Maths  
Maths is one major problem in embedded systems because the maths 
libraries tend to be large.  There are ways around this.  For some things 
like sin and cos a look up table can be used.  Whilst this takes up space this 
is data not code (highly relevant to an 8051 architecture) it can run much 
faster than a function that actually calculates the sin or cos. 
 
Another way of speeding things up is to revert to fractions.  To get 75% of 
100 look at as ¾ or 100.  Take 100 do an integer divide by 4 and an integer 
multiply by 3.  No floats are needed. 
 
Incidentally never do comparisons with floating point numbers.  Rounding 
errors can play havoc.   
 
The other taboo is playing with the bit fields inside a float. There is no 
global standard defined.  There may be a de-facto standard but it is not 
worth the risk. 
 
 
 
 



   

www.keil.co.uk page 30 of 37  

6. Embedded C++ 
 
As C++  (and OO) became the in thing in the  “normal” programming 
world so C++  is becoming sought after in the embedded world.   This is to 
some extent fashion.  I have seen many people looking for C++ compilers 
for the 8051 “because C++ is better than C”.   
 
People also want to use C++ compilers when writing C because “C++ is a 
superset of C” This was true many years ago however the two are now 
distinctly separate languages.  Having discussed the matter with members 
of the UK ISO C and C++ standardisation committees I understand that 
there are come parts of C and C++ that have the same syntax that mean 
different things.  So, do NOT use a C++ compiler for C. 
 
I believe that C++ is too large for 8 bit systems and indeed many 
architectures (8051 for example) do not suit the language.  C++ is also in 
its infancy for embedded 16 bit  systems.  I have found that C++ works in 
32 and 64 bit systems.  Indeed Embedded C++ (EC++) is being primarily 
aimed at 32 bit systems and will obviously work on 64 bit systems.  I can 
not see any real incentive to develop EC++ “backwards” in to the smaller 
CPU. 
 
Of course, compiler vendors would like everyone to go from C to EC++ as 
this will mean more compiler sales.  This leads on to the other problem 
with C++ that the development tools (and particularly the debug tools) will 
be very complex and expensive.  If you are on a cost conscious project, 
and who isn’t, the buzzwords OO and reuse.  
 
Just as C was a step away from the hardware compared to assembler C++ 
is a step further away.  EC++ will need far more RAM than it’s C 
counterpart.  However C++ also creates classes and objects on the fly.  The 
opportunity for memory leaks is very high.  EC++ is being developed to 
counter some of these problems.  Things like templates will not be in 
EC++. 
 
I think that in the next two years C++ will be viable for 16 bit systems 
upwards.  I am still not convinced that this is a good idea in terms of speed, 
memory resources and deterministic response. However, I would not 
advocate its use in 8 bit systems even if it does become available. 
 
 



   

www.keil.co.uk page 31 of 37  

7. Conclusion 
Embedded Engineering is just that.  An engineering discipline.  Like 
architecture, embedded engineers should use the discipline of proper 
construction methods and work within the rules.  With practice, this will 
produce robust and safe systems automatically (and quickly). 
 
Once one has got over the learning curve of doing things rigorously, ones 
mind is free design with flair.  Most of the worlds great buildings were 
designed using standard bricks or frames made from standard girders to 
stringent (and long) building regulations. Builders and architects who have 
been shown not to use the correct methods end up in court or no longer 
able to practice. 
 
As the IEE, BCS, Engineering Council and the government push to raise the 
status of Engineers in the UK embedded engineers will be expected to 
come into line with other professions.  IE using defined construction 
methods. 
 
The game is changing and you WILL be judged by it’s rules weather you 
want to play or not.  
 
It does not take much to use Lint, MISRA-C, to use version control (this is 
required for ISO9000 anyway).  The costs for these tools usually repay 
themselves in the shortening of debugging on the first project.  The 
potential savings are enormous if it saves you having to go to court.   
 
I am assuming that you are of course, using a good compiler and 
debugger.  It is of little use writing good solid embedded C if you then use 
a doggy compiler or an intrusive ICE.  Tools are a whole new ball game 
explained in Microcontroller Debuggers – Their Place In The 
Microcontroller Application Development Process [Hills] Getting the 
language in to a robust state is one thing.  Having the (appropriate) tools of 
the same quality to support it is another. 
 
Good SW Engineering practice saves you having to thing about much of 
the trivial time wasting parts of a project and lets you get on with innovative 
and safe designs.  
I recommend that you read MISRA-C and Konigs Traps and Pitfalls. 
 
 
I shall finish with the last line of the introduction:  
 

It is well worth buying good quality tools. 
 

and add:- 
 

The ART in Embedded Engineering comes though 
good engineering discipline. 



   

www.keil.co.uk page 32 of 37  

8. Appendix A (style) 
 
I do not intend to go through a complete style guide.  These are a few notes 
to help you decide which of these common styles suit you (if any).  
Indentation is up to the user as long as it is consistent.  That is consistent 
across a project not per developer.  
 
There are many styles freely available on the Internet.  It is not the end of 
the world if you do not get to use your per scheme.  
 

K&R 
 
This is the original style.  However, this has largely been superseded.  
Especially with the change to ISO C where the parameter types are 
specified in the function line not below it.  
 
Some people still use this because it is the “correct” way of doing things 
and site K&R (First edition).  C is over 20 years old and even the 
originators, enlightened as they were, have moved on and learnt more.  
There is nothing wrong with this style (obviously moving the type 
declarations) but it is not the definitive style. 
 
The only word of warning is that some debug tools (usually the older ones) 
assume this style.  They require the opening { to be on the same line as the 
if, do etc. 
 
void change_KandR( from, to)  
char *to 
char *from 
{ 

do{ 
if(‘a’ == *from ){ 

*to =’A’; 
}else{ 

*to = *from; 
} 
++to; 
++from; 

} while( ‘\0’ != to[-1] ); 
} 
 
 
 



   

www.keil.co.uk page 33 of 37  

Indented  Style 
 
 
This is a later style than K&R.  It requires more space on screen and on 
paper BUT it takes up no more room when compiled.  This more open style 
crept in when screens gained colour, windows  and more than 80 columns 
by 40 lines. 
 
void change_case( char * from,  char *to) 
{ 

do 
{ 
if(‘a’ == *from ) 

{ 
*to =’A’; 

} 
else 

{ 
*to = *from; 

 
} 

++to; 
++from; 
}  

while( ‘\0’ != to[-1] ); 
} 
 
 

Exdented Style 
 
void change_case( char * from,  char *to) 
{ 

do 
{ 

if(‘a’ == *from ) 
{ 

*to =’A’; 
} 
else 
{ 

*to = *from; 
 

} 
++to; 
++from; 

}  
while( ‘\0’ != to[-1] ); 

} 
 
 
My style 
Over the years, I have found I prefer to use Exdented (when nothing else 
was specified).  This is because I find that when doing code reviews it is 
easier to spot the pairs of braces round a block.  I usually join the pairs of 
braces using coloured pencils. 



   

www.keil.co.uk page 34 of 37  

9. Appendix B Lint and Example Program 
 
The following program, BADCODE.C, is one of the example programs 
provided with our evaluation kits.  This program has a lot of errors and is 
intended to demonstrate the error detecting and correcting capabilities of 
our tools. 
 
Following are listings of the example program, output from the C51 
compiler, and output from PC-Lint.  The C51 Compiler detects and reports 
12 errors and warnings while PC-Lint detects and reports 26 errors and 
warnings. 
 
As you can see, the quantity and quality of the error messages reported by 
PC-Lint is greater than that reported by the C compiler. 
 
/*------------------------------------------------------------------------------ 
BADCODE.C 
 
Copyright 1995 KEIL Software, Inc. 
 
This source file is full of errors.  You can use uVision to compile and 
correct errors in this file. 
------------------------------------------------------------------------------*/ 
 
#incldue <stdio.h> 
 
void main (void, void) 
{ 
unsigned i; 
long fellow; 
 
fellow = 0; 
 
fer (i = 0; i < 1OOO; i++) 
  { 
  printf ("I is %u\n", i); 
 
  fellow += i; 
  printf ("Fellow = %ld\n, fellow); 
  printf ("End of loop\n") 
  } 
} 



   

www.keil.co.uk page 35 of 37  

 
C51 Output 
 
When compiled with the C51 compiler, the BADCODE program generates 
the following errors and warnings: 
 
MS-DOS C51 COMPILER V5.02 
Copyright (c) 1995 KEIL SOFTWARE, INC.  All rights reserved.       
*** ERROR 315 IN LINE 10 OF BADCODE.C: unknown #directive 'incldue' 
*** ERROR 159 IN LINE 12 OF BADCODE.C: 'typelist': type follows void 
*** WARNING 206 IN LINE 19 OF BADCODE.C: 'fer': missing function-prototype 
*** ERROR 267 IN LINE 19 OF BADCODE.C: 'fer': requires ANSI-style prototype 
*** ERROR 141 IN LINE 19 OF BADCODE.C: syntax error near ';' 
*** ERROR 141 IN LINE 19 OF BADCODE.C: syntax error near 'OOO' 
*** ERROR 202 IN LINE 19 OF BADCODE.C: 'OOO': undefined identifier 
*** ERROR 141 IN LINE 19 OF BADCODE.C: syntax error near ')' 
*** WARNING 206 IN LINE 21 OF BADCODE.C: 'printf': missing function-prototype 
*** ERROR 103 IN LINE 24 OF BADCODE.C: '<string>': unclosed string 
*** ERROR 305 IN LINE 24 OF BADCODE.C: unterminated string/char const 
*** ERROR 141 IN LINE 25 OF BADCODE.C: syntax error near 'printf' 
 
C51 COMPILATION COMPLETE.  2 WARNING(S),  10 ERROR(S) 
 
PC-Lint Output 
When the same code is parsed by PC-Lint, the BADCODE program 
generates the following errors and warnings: 
--- Module:   badcode.c  
badcode.c  10  Error 16: Unrecognized name 
badcode.c  10  Error 10: Expecting end of line 
badcode.c  12  Error 66: Bad type 
badcode.c  12  Error 66: Bad type 
badcode.c  19  Info 718: fer undeclared, assumed to return int 
badcode.c  19  Info 746: call to fer not made in the presence of a prototype 
badcode.c  19  Error 10: Expecting ',' 
badcode.c  19  Error 26: Expected an expression, found ';' 
badcode.c  19  Warning 522: Expected void type, assignment, increment or decrement 
badcode.c  19  Error 10: Expecting ';' 
badcode.c  19  Error 10: Expecting ';' 
badcode.c  21  Info 718: printf undeclared, assumed to return int 
badcode.c  21  Info 746: call to printf not made in the presence of a prototype 
badcode.c  23  Info 737: Loss of sign in promotion from long to unsigned long 
badcode.c  23  Info 713: Loss of precision (assignment) (unsigned long to long) 
badcode.c  24  Error 2: Unclosed Quote 
badcode.c  25  Error 10: Expecting ',' 
badcode.c  26  Error 10: Expecting ',' 
badcode.c  26  Error 26: Expected an expression, found '}' 
badcode.c  26  Warning 559: Size of argument no. 2 inconsistent with format 
badcode.c  26  Warning 516: printf has arg. type conflict (arg. no. 2 -- pointer vs. unsigned int) 
with line 21 
badcode.c  27  Warning 550: fellow (line 15) not accessed 
 
--- Global Wrap-up 
Warning 526: printf (line 21, file badcode.c) not defined 
Warning 628: no argument information provided for function printf (line 21, file badcode.c) 
Warning 526: fer (line 19, file badcode.c) not defined 
Warning 628: no argument information provided for function fer (line 19, file badcode.c) 



   

www.keil.co.uk page 36 of 37  

 

10. References 
 
Beach, M. Hitex C51 Primer  3rd Ed, Hitex UK, 1995, http://www.hitex.co.uk  
  
COX B, Software ICs and Objective C, Interactive Programming Environments, McGraw 
Hill, 1984 
 
Hatton  L, Safer C, Mcgraw-Hill(1994) 
 
Hills C A, Microcontroller Debuggers – Their Place In The Microcontroller 
Application Development Process Chris Hills  & Mike Beach, Hitex (UK) Ltd. 
April 1999 http://www.hitex.co.uk &  http://www.phaedsys.org 
 
Hills CA & Beach M, Hitex, SCIL-Level  A paper project managers, team 
leaders and Engineers on the classification of embedded projects and 
tools. Useful for getting accountants to spend money Download from 
www.scil-level.org 
 
[Johnson ] S. C. Johnson, ‘Lint, a Program Checker,’ in Unix Programmer’s 
Manual, Seventh Edition, Vol. 2B, M. D. McIlroy and B. W. Kernighan, eds. 
AT&T Bell Laboratories: Murray Hill, NJ, 1979. 
 
Kernighan Brian W, The Practice of Programming.  Addison Wesley 1999 
 
Koenig A C Traps and Pitfalls, Addison Wesley, 1989 
 
K&R The C programming Language 2nd Ed., Prentice-Hall, 1988   
 
MISRA  Guidelines For The Use of The C Language in Vehicle Based 
Software. 1998 From  www.misra.org.uk and www.hitex.co.uk  
 
Ritchie D. M. The Development of the C Language  Bell Labs/Lucent 
Technologies Murray Hill, NJ 07974 USA  1993 available from his web site  
http://cm.bell-labs.com/cm/cs/who/dmr/index.htm.  This is well worth reading. 
 

http://www.hitex.co.uk/
http://www.phaedsys.org/
http://www.scil-level.org/
www.misra.org.uk
www.hitex.co.uk
http://cm.bell-labs.com/cm/cs/who/dmr/index.htm


   

www.keil.co.uk page 37 of 37  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 

Hitex (UK) Ltd. 
Warwick University Science Park 

Coventry, CV4 7EZ 
Tel. +44 (0) 1203 692 066 

Fax. +44 (0) 1203 692 131 
www.hitex.co.uk 

chills@hitex.co.uk 
 


	Introduction
	C History
	SW Engineering with C
	Organise
	Good  C
	Style
	(K&R)
	(Indent)
	(Exdented)
	Information blocks and comments

	Header files.
	Magic Numbers
	Flow Control
	If
	Switch
	Breaking the flow
	Static linkage
	Declaration and initialisation

	How to prove it is Good C
	Formal Eastern European Writing
	Hungarian Notation
	Formal Methods


	Embedded Engineering
	Embedded C Engineering
	SIZE MATTERS !
	Enumerated Types
	One way of NOT decreasing the code

	Volatile
	Const
	Register
	Dynamic memory
	Libraries.
	Tuning Libraries
	Maths

	Embedded C++
	Conclusion
	Appendix A (style)
	K&R
	Indented  Style
	Exdented Style

	Appendix B Lint and Example Program
	References

		2001-03-22T09:36:54+0000
	Phaedrus Systems UK
	Chris Hills
	Issue to Hitex UK




