Introduction to Logic Array

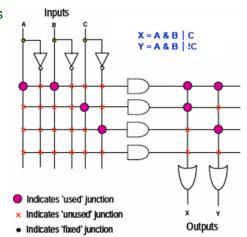
Dr. M. Shiple

Advanced Microprocessor (EEC 209), 2017

Outline

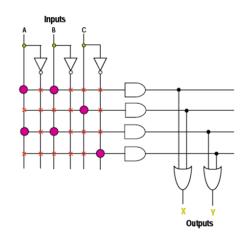
- History of Programmable Logic
 - History of CPLD
- 2 History of FPGA
- FPGA architecture components
 - FPGA Routing Architectures
 - Configurable Logic Block (CLB)
 - Digital Clock Manager (DCM)

History of Programmable Logic

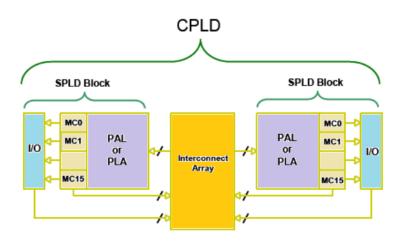

ليس سقوط المرء فشلاً وإنما الفشل أن يبقى حيث سقط

I can accept failure, Everyone fails at something.
But I cannot accept not trying.

- Michael Jordan


Simple PLA

- Any combination of ANDs/ORs
- High Input-to-output delay (or propagation delay)
- Wafer geometries of 10μm technology

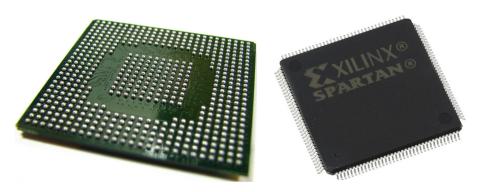


Single Programmable Logic Device(SPLD)

- t_{PD} being better
- Less complex software
- Output plan is fixed
- Medium logic density available to user

Complex Programmable Logic Device(CPLD)

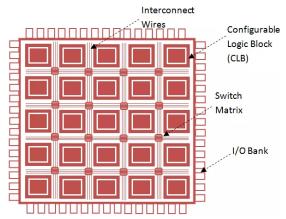
- PLD blocks (macrocells)
- Central global interconnect


XC95 CPLD chip

Part marking for non-chip scale package

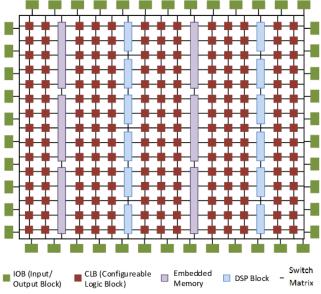
Device	Speed Grade		Package Type / Number of Pins		Temperature Range (T _J) ⁽²⁾	
XC2S50E	-6	Standard Performance	TQ(G)144	144-pin Plastic Thin QFP	C = Commercial	0°C to +85°C
XC2S100E	-7	Higher Performance ⁽¹⁾	PQ(G)208	208-pin Plastic QFP	I = Industrial	-40°C to +100°C
XC2S150E			FT(G)256	256-ball Fine Pitch BGA		
XC2S200E			FG(G)456	456-ball Fine Pitch BGA		
XC2S300E			FG(G)676	676-ball Fine Pitch BGA		
XC2S400E					_	
XC2S600E						

BGA vs QFP


BGA:	Ball G	arid	Array
QFP:	Quad	Fla	t Pack

Package Type / Number of Pins					
TQ(G)144	144-pin Plastic Thin QFP				
PQ(G)208	208-pin Plastic QFP				
FT(G)256	256-ball Fine Pitch BGA				
FG(G)456	456-ball Fine Pitch BGA				
FG(G)676	676-ball Fine Pitch BGA				

History of FPGA

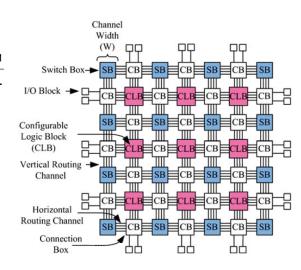


Field Programmable Gate Arrays (FPGA)

- Post layout timing (*importance of placement).
- Fast register pipelining.
- exceeding the 10 million gate.
- Wafer 90 nm technology, eight- layer metal process technology. EEC 209

FPGA Architecture components

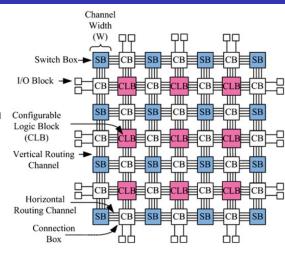
FPGA architecture components



Definition

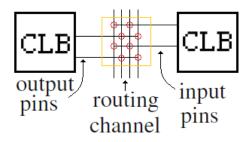
The routing interconnect of an FPGA consists of wires and programmable switch witch.

FPGA architectures:


- Island-Style Routing Architecture.
- hierarchical.

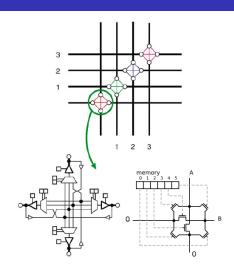
Island-Style Routing Architecture

FPGA architectures:


- The most commonly used architecture.
- (CLBs) are arranged on a 2D grid.
- Pre-fabricated wiring segments.
- Programmable switches.
- Routing network occupies 80?90% of total area/ 20-10% CLB.

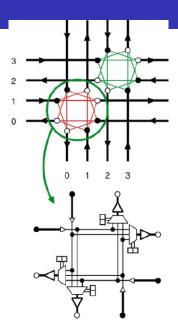
Connection Box

Connection box: connects the adjacent Logic blocks. Fc(in):The ratio of connectivity between input pins and routing channel. Fc(out):The ratio of connectivity between output pins and routing channel

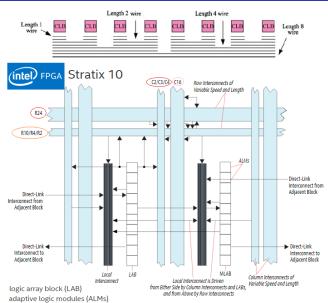

Example:Fc(in) equal to 1.0 means that all the tracks of adjacent routing channel are connected to the input pin of the logic block.

Fc(in)=0.5

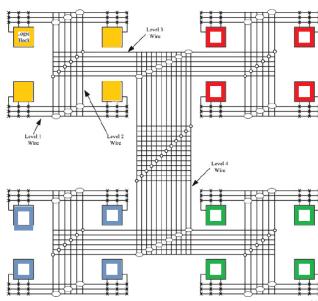
Switching Box (Bidirectional)


Switching Box: connects the vertical and horizontal routing tracks. Fs(in):how many track could be attached to each entering track.

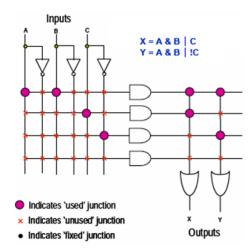
Fc(in)=3


Switching Box (Directional)

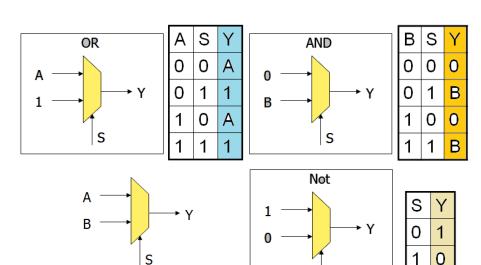
Switching Box: connects the vertical and horizontal routing tracks. Fs(in):how many track could be attached to each entering track.


Channel segment distribution

Flexibility Vs. Delay In mesh-based FPGAs, multi-length wires are created to reduce delay.

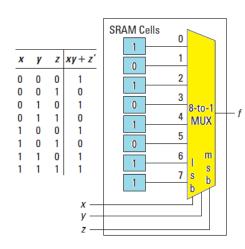

Hierarchical Routing Architecture

In the hierarchical FPGA called HFPGA, LBs are grouped into clusters. Clusters are then grouped recursively together



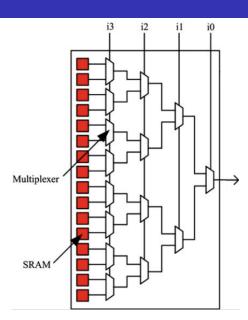
CLB:PAL style wide input gates

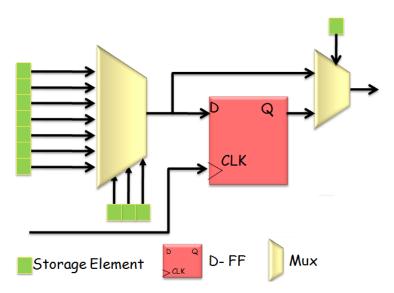
- Fine-grained logic block.
- Large amounts of programmable interconnect.
 - Area-inefficiency(High routing), ,.
 - 2 Low performance (delay).
 - High power consumption(high interconnect capacitance)


CLB:Multiplixers

CLB:look-up table (LUT)

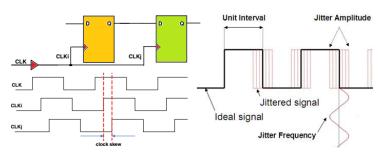
CLB:Configurable Logic Block $f(x, y, z) = xy + \bar{z}$


- Function's output bits connected as inputs to an 8x1 multiplexer (MUX).
- Inputs (x,y,z) would be the select lines for the MUX.
- Regardless of the complexity, single LUT.


CLB:look-up table (LUT)

4 input LUT (LUT-4)

- Coarse-grained logic block.
- n_input function generator consists of a 2ⁿ-to-1 multiplexer (MUX).
- Called n-MUX
- Delay depends on the number of LUTs



CLB:Syncronous Vs. Asyncrouns

Definition

Digital Clock Manager (DCM): provides different clock periods (frequency synthesizer multiply/divide input clock), and eliminates clock deskewing, jitter, and Phase shifting. definition

ref

Ron Sass Andrew G. Schmidt, "Embedded Systems Design with Platform FPGAs Principles and Practices", chapter 2-2 Umer Farooq, et al ,"Tree-Based Heterogeneous FPGA Architectures",2012 Springer, Chapter 2