Diodes

By: Dr. Mustafa Shiple

Texbook Reference

"Microelectronic Circuits", Adel Sedra

The Ideal Diode

IV characteristics

Example

Application: The Rectifier

Application: The Rectifier

Application: The Rectifier

For the shown circuit, sketch the waveform of v_D .

The Forward-Bias Region

Example

+10 V

Example

$$T_3 = \frac{0 - (-10)}{5k} = 2mA$$

Graphical Analysis Using the Exponential Model (4.3.2)

Halfwave rectifier (4.5)

 v_{o}

peak inverse voltage (PIV) that the diode must be able to withstand without breakdown,, reverse breakdown voltage at least 50% greater than the expected PIV.

Full wave rectifier (center tapped)

Full wave rectifier

Center Tapped Full Wave Rectifier

D2: Reverse Bias – Open Circuit

Full wave rectifier

Center Tapped Full Wave Rectifier

During Negative Half Cycle D1: Reverse Bias – Open Circuit Input Output InstrumentationTools.com D2: Forward Bias - Closed Circuit

Full wave rectifier

Center Tapped Full Wave Rectifier

During Negative Half Cycle D1: Reverse Bias – Open Circuit Input Output InstrumentationTools.com D2: Forward Bias - Closed Circuit

The Bridge Rectifier (4.5.3)

Full Wave Bridge Rectifier

The Bridge Rectifier (4.5.3)

Bridge Full Wave Rectifier

The Bridge Rectifier (4.5.3)

Bridge Full Wave Rectifier

The Rectifier with a Filter Capacitor (4.5.4)

CR >> T, where T is the period of the input sinusoid.

End