Week 1

Introduction to Electrical circuits

By : Dr. Mustafa M. Shiple

Electronics I

Grading System

1	Attendance	5%
2	Technical reports/ Assignments	10%
3	Midterm exam	20%
4	Quizzes	5%
5	Final Exam	60%
Total		100%

Ref: Fundamentals of Electric Circuits, Charles K. Alexander, 5th edition

Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C).

The SI prefixes.

Multiplier	Prefix	Symbol
10 ¹⁸	exa	Е
10 ¹⁵	peta	Р
10 ¹²	tera	Т
10 ⁹	giga	G
10^{6}	mega	Μ
10^{3}	kilo	k
10^{2}	hecto	h
10	deka	da
10^{-1}	deci	d
10^{-2}	centi	с
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	р
10^{-15}	femto	f
10^{-18}	atto	а

The **law of conservation** of charge states that charge can neither be **created** nor **destroyed**, only transferred, Thus the algebraic sum of the electric charges in a system <u>does not change</u>.

Electric current is the time rate of change of charge, measured in amperes (A).

Figure 1.4

Two common types of current: (a) direct current (dc), (b) alternating current (ac).

Free electron movement when not having the current.

Electron movement when having the current.

Voltage (or potential difference) is the energy required to move a unit charge through an element, measured in volts (V).

Power is the time rate of expending or absorbing energy, measured in watts (W).

p = vi

The resistance R of an element denotes its ability to resist the flow of electric current; it is measured in ohms (Ω).

Material	Resistivity (Ω·m)	Usage
Silver	1.64×10^{-8}	Conductor
Copper	1.72×10^{-8}	Conductor
Aluminum	2.8×10^{-8}	Conductor
Gold	2.45×10^{-8}	Conductor
Carbon	4×10^{-5}	Semiconductor
Germanium	47×10^{-2}	Semiconductor
Silicon	6.4×10^{2}	Semiconductor
Paper	10^{10}	Insulator
Mica	5×10^{11}	Insulator

Ohm's law states that the voltage V across a resistor is directly proportional to the current \mathbf{i} flowing through the resistor.

$i = \frac{v}{R} = \frac{30}{5 \times 10^3} = 6 \text{ mA}$

Kirchhoff's current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero

 $8 \Omega \overset{+}{\underset{-}{\overset{v_o}{\overset{}}}}$

Soln

8Ω

 $\frac{1}{10} = \frac{10}{2}$ til til de la constance de la

 v_1

Kirchhoff's voltage law (KVL) states that the algebraic sum of all voltages around a closed path (or loop) is zero.

 $v_2 + v_3 + v_5 = v_1 + v_4$

30 V 6Ω v_3 from (1) and (2) $1_{1} = 1_{2} +$ 7 1) = 0 $V_{S} = 8\left(\frac{V_{2}}{3} + \frac{V_{2}}{6}\right) + V_{2}$ $+ V_{2}(1)$ $V_{\zeta} = V$ 1, 2 $30 = \frac{16U2}{6} + \frac{8U2}{6} + \frac{6U2}{6}$ $\mathcal{V}_2 = \mathcal{V}_3$ $v_{2} = \frac{30 \times 6}{5} = 6 \times = v_{3}$ 30 1, = 3A م م م

Series Resistors

 $v = v_1 + v_2$ $i(R) = iR_1 + iR_2$ j $R_{eq} = j (R_1 + R_2)$ $R_{eq} = R_1 + R_2$

 $R_{\rm eq} = R_1 + R_2 + \dots + R_N = \sum_{n=1}^{N} R_n$

 \boldsymbol{b}

Voltage Division

 $\eta = i(R_1 + R_2)$ \tilde{c} $\tilde{l} = \frac{v}{R_1 + R_2}$ $\mathcal{N}_{1} = \mathcal{I} \mathcal{R}_{1}$ v $\cdot \cdot \cdot \cdot \cdot \cdot \cdot = \frac{V_1}{R_1}$ 72 $from (1) & (2); \frac{v_1}{R_1} = \frac{v_2}{R_1 + R_2}$ $\overline{R_1}$

Voltage Division

Find NI ?!

Parallel Resistors

Q Node $a: \sum_{i=0}^{i=0}$ $i = i_1 + i_2$ $x = \frac{w}{R_1} + \frac{w}{R_2}$ R_{eq} +v $\frac{1}{R_2} = \frac{R_2 + R_1}{R_1 R_2}$ \overline{R}_1 Reg $\tilde{R} = \frac{R_1 R_2}{R_1 + R_2}$

Current Division

 $i_{l} = \frac{\mathcal{V}}{\mathcal{R}_{l}} \Rightarrow \mathcal{V} = i_{l}\mathcal{R}_{l} \rightarrow \mathcal{D}$ $i = \frac{v}{Req} \Rightarrow v = iReq \Rightarrow 2$ From (1) and (2) i = iReq = iReq $i_{1} = i \frac{Reg}{R} = i \left[\frac{R_{1}R_{2}}{R_{1}+R_{2}} \frac{I}{R_{1}} \right]$ $i = i \begin{bmatrix} R_2 \\ R_1 + R_2 \end{bmatrix}$

2.10 In the circuit of Fig. 2.67, a decrease in R_3 leads to a decrease of, select all that apply: (a) current through R_3 (b) voltage across R_3 (c) voltage across R_1 (d) power dissipated in R_2 (e) none of the above

