ANSWER THE FOLLOWING QUESTIONS:

1. Consider the circuit shown in next Figure. Assume $I_{REF} = 200\mu A$ and $R = 2k\Omega$. The transistor parameters are $\beta = 40$, $I_{S1} = I_{S2} = 5 \times 10^{-15} A$. Find V_{BE1}, V_{BE2} , and I_O .

Solution:

(a) We know from two transistor current source that $I_{C1} = I_{C2}$ and both have a relation with I_{REF} as follows:

$$I_{C1} = \frac{I_{Ref}}{\left(1 + \frac{2}{\beta}\right)}$$

= $\frac{200\mu}{\left(1 + \frac{2}{40}\right)} = 190.48\mu A$
 $\therefore I_C = \beta I_B \Rightarrow I_{B1} = 4.762\mu A$
 $\therefore V_{BE1} = V_T \ln(\frac{I_{C1}}{I_{S1}}) = 0.63345V$ where $V_T = 0.026V$
 $I_{Ref} = I_{B1} + I_{B2} + I_{C1} \Rightarrow I_{B2} = I_{Ref} - I_{C1} - I_{B1} = 4.758\mu A$
(b)
 $V_{BE1} = I_{B2}R + V_{BE2} \Rightarrow V_{BE2} = 0.624VI_O = I_{S2}e^{\frac{V_{BE2}}{V_T}} = 132.4\mu A$

- 2. The values of β for the transistors in next Figure are very large.
 - (a) If Q_1 is diode-connected with $I_1 = 0.5mA$, determine the collector currents in the other two transistors.
 - (b) Repeat part (a) if Q_2 is diode-connected with $I_2 = 0.5mA$.
 - (c) Repeat part (a) if Q_3 is diode-connected with $I_3 = 0.5mA$.

3. Consider the Wilson current source in next Figure . The transistors have a finite β and an infinite Early voltage. Derive the expression for I_O in terms of $I_R EF$ and β .

Solution:

$$I_{Ref} = I_{C1} + I_{B3}$$

$$I_{E3} = I_{C2} + 2I_B = I_{C2} \left(1 + \frac{2}{\beta} \right)$$

$$= I_{C2} + 2I_B = I_{C2} \left(1 + \frac{2}{\beta} \right)$$

$$I_{C2} = \frac{I_{E3}}{1 + \frac{2}{\beta}} = \frac{(1 + \beta)}{(2 + \beta)}I_{C3}$$

$$I_{Ref} = \frac{(1 + \beta)}{(2 + \beta)}I_{C3} + \frac{I_{C3}}{\beta}$$

$$I_o = I_{Ref} \left(\frac{1}{1 + \left(\frac{2}{\beta(2 + \beta)} \right)} \right)$$

- 4. Consider the circuit in next Figure. Neglect base currents and assume $V_A=\infty$.
 - (a) Derive the expression for IO in terms of I_{Ref} and R_E .
 - (b) Determine the value of R_E such that $I_O = I_{Ref} = 100 \mu A$. Assume $V_{BE} = 0.7V$ at a collector current of 1 mA.

Solution:

(a)

$$2V_{BE} = V_{BE} + I_o R_E$$
$$V_{BE} = I_o R_E$$
$$V_T \ln(\frac{I_{Ref}}{I_S}) = I_o R_E$$

(b)

$$I_S = \frac{I_C}{e^{\frac{V_{BE1}}{V_T}}} = 2.03 \times 10^{-15} A$$
$$V_T \ln(\frac{I_{Ref}}{I_S}) = I_o R_E \Rightarrow R_E = 6.4 K\Omega$$

5. Consider the circuit in next Figure. The transistor parameters are: $\beta = \infty$, $V_A = \infty$, and $V_{BE} = 0.7V$. Design the circuit such that the BE voltages of $Q_1, Q_2, and Q_3$ are identical to that of Q_R . What are the values of I_{O1}, I_{O2} , and I_{O3} ?

Solution:

To keep BE voltages of $Q_1, Q_2, and Q_3$ are identical to that of Q_R , therefore voltages of $R_{ER}, R_{E1}, R_{E2}and R_{E3}$ must be identical too.

$$\begin{split} V_{R_{ER}} &= I_{Ref} R_{ER} = \frac{V^+ - 0.7}{6.3K + 3K} \times 3K = 3V \\ V_{R_{E1}} &= I_{o1} R_{E1} \Rightarrow R_{E1} = \frac{3}{1m} = 3K\Omega \end{split} \qquad \qquad I_{o1} = I_{Ref} \end{split}$$

$$V_{R_{E2}} = I_{o2}R_{E2} \Rightarrow R_{E2} = \frac{3}{2m} = 1.5K\Omega \qquad I_{o2} = 2I_{Ref}$$
$$V_{R_{E3}} = I_{o3}R_{E3} \Rightarrow R_{E3} = \frac{3}{4m} = 0.75K\Omega \qquad I_{o3} = 4I_{Ref}$$