Examiner : Dr. Mustafa M. Shiple

ANSWER THE FOLLOWING QUESTIONS:

1. Consider the circuit shown in next Figure. Assume $I_{R E F}=200 \mu A$ and $R=2 k \Omega$. The transistor parameters are $\beta=40, I_{S 1}=I_{S 2}=5 \times 10^{-15} A$. Find $V_{B E 1}, V_{B E 2}$, and I_{O}.

Solution:

(a) We know from two transistor current source that $I_{C 1}=I_{C 2}$ and both have a relation with $I_{R E F}$ as follows:

$$
\begin{aligned}
I_{C 1} & =\frac{I_{R e f}}{\left(1+\frac{2}{\beta}\right)} \\
& =\frac{200 \mu}{\left(1+\frac{2}{40}\right)}=190.48 \mu \mathrm{~A} \\
& \because I_{C}=\beta I_{B} \Rightarrow I_{B 1}=4.762 \mu \mathrm{~A} \\
& \therefore V_{B E 1}=V_{T} \ln \left(\frac{I_{C 1}}{I_{S 1}}\right)=0.63345 \mathrm{~V} \\
I_{R e f} & =I_{B 1}+I_{B 2}+I_{C 1} \Rightarrow I_{B 2}=I_{R e f}-I_{C 1}-I_{B 1}=4.758 \mu \mathrm{~A}
\end{aligned} \quad \text { where } V_{T}=0.026 \mathrm{~V}
$$

(b)

$$
V_{B E 1}=I_{B 2} R+V_{B E 2} \Rightarrow V_{B E 2}=0.624 V I_{O}=I_{S 2} e^{\frac{V_{B E 2}}{V_{T}}}=132.4 \mu \mathrm{~A}
$$

2. The values of β for the transistors in next Figure are very large.
(a) If Q_{1} is diode-connected with $I_{1}=0.5 \mathrm{~mA}$, determine the collector currents in the other two transistors.
(b) Repeat part (a) if Q_{2} is diode-connected with $I_{2}=0.5 \mathrm{~mA}$.
(c) Repeat part (a) if Q_{3} is diode-connected with $I_{3}=0.5 \mathrm{~mA}$.

Solution:

(a)

$$
\begin{aligned}
I_{2} & =2 I_{1} a n d I_{3}=3 I_{1} \\
I_{2} & =1.0 \mathrm{~mA}, I_{3}=1.5 \mathrm{~mA}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& I_{1}=0.5 I_{2} \text { and } I_{3}=3\left(0.5 I_{2}\right) \\
& I_{2}=0.25 \mathrm{~mA}, I_{3}=0.75 \mathrm{~mA}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& I_{1}=\frac{I_{3}}{3} \text { and } I_{2}=2\left(\frac{I_{3}}{3}\right) \\
& I_{2}=0.167 m A, I_{2}=0.333 \mathrm{~mA}
\end{aligned}
$$

3. Consider the Wilson current source in next Figure . The transistors have a finite β and an infinite Early voltage. Derive the expression for I_{O} in terms of $I_{R} E F$ and β.

Solution:

$$
\begin{aligned}
I_{R e f} & =I_{C 1}+I_{B 3} \\
I_{E 3} & =I_{C 2}+2 I_{B}=I_{C 2}\left(1+\frac{2}{\beta}\right) \\
& =I_{C 2}+2 I_{B}=I_{C 2}\left(1+\frac{2}{\beta}\right) \\
I_{C 2} & =\frac{I_{E 3}}{1+\frac{2}{\beta}}=\frac{(1+\beta)}{(2+\beta)} I_{C 3} \\
I_{R e f} & =\frac{(1+\beta)}{(2+\beta)} I_{C 3}+\frac{I_{C 3}}{\beta} \\
I_{o} & =I_{R e f}\left(\frac{1}{1+\left(\frac{2}{\beta(2+\beta)}\right)}\right)
\end{aligned}
$$

4. Consider the circuit in next Figure. Neglect base currents and assume $V_{A}=\infty$.
(a) Derive the expression for IO in terms of $I_{R e f}$ and R_{E}.
(b) Determine the value of R_{E} such that $I_{O}=I_{\text {Ref }}=100 \mu \mathrm{~A}$. Assume $V_{B E}=0.7 \mathrm{~V}$ at a collector current of 1 mA .

Solution:

(a)

$$
\begin{aligned}
& 2 V_{B E}=V_{B E}+I_{o} R_{E} \\
& V_{B E}=I_{o} R_{E} \\
& \quad V_{T} \ln \left(\frac{I_{R e f}}{I_{S}}\right)=I_{o} R_{E}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& I_{S}=\frac{I_{C}}{e^{\frac{V_{B E 1}}{V_{T}}}}=2.03 \times 10^{-15} \mathrm{~A} \\
& V_{T} \ln \left(\frac{I_{R e f}}{I_{S}}\right)=I_{o} R_{E} \Rightarrow R_{E}=6.4 \mathrm{~K} \Omega
\end{aligned}
$$

5. Consider the circuit in next Figure. The transistor parameters are: $\beta=\infty, V_{A}=\infty$, and $V_{B E}=0.7 \mathrm{~V}$. Design the circuit such that the BE voltages of $Q_{1}, Q_{2}, a n d Q_{3}$ are identical to that of Q_{R}. What are the values of $I_{O 1}, I_{O 2}$, and $I_{O 3}$?

Solution:

To keep BE voltages of $Q_{1}, Q_{2}, a n d Q_{3}$ are identical to that of Q_{R}, therefore voltages of $R_{E R}, R_{E 1}, R_{E 2} a n d R_{E 3}$ must be identical too.

$$
\begin{array}{ll}
V_{R_{E R}}=I_{R e f} R_{E R}=\frac{V^{+}-0.7}{6.3 K+3 K} \times 3 \mathrm{~K}=3 \mathrm{~V} & \\
V_{R_{E 1}}=I_{o 1} R_{E 1} \Rightarrow R_{E 1}=\frac{3}{1 m}=3 \mathrm{~K} \Omega & I_{o 1}=I_{R e f}
\end{array}
$$

$$
\begin{array}{ll}
V_{R_{E 2}}=I_{o 2} R_{E 2} \Rightarrow R_{E 2}=\frac{3}{2 m}=1.5 \mathrm{~K} \Omega & I_{o 2}=2 I_{R e f} \\
V_{R_{E 3}}=I_{o 3} R_{E 3} \Rightarrow R_{E 3}=\frac{3}{4 m}=0.75 \mathrm{~K} \Omega & I_{o 3}=4 I_{R e f}
\end{array}
$$

