ANSWER THE FOLLOWING QUESTIONS:

1. The passive filters have different disadvantages

[10 marks] $[A_a, C_p]$

- (a) Draw a first order LPF circuit and drive an expression for its transfer function |T(S)|.
- (b) Briefly, discuss the loading problem; prove your answer by equations.
- (c) Drive an expression for active first order LPF (single zero) by using inverting opamp. (include the wiring diagram to your answer).
- (d) Compare and contrast between inverting and non-inverting realization topologies

(b) The characteristic equation of passive LPF will be affected by changing the value of the loading resistor

$$|T(S)| = \frac{R_L}{R_L + R} \frac{1}{\left(S\frac{R_L RC}{R_L + R} + 1\right)}$$

$$|T(S)| = \frac{1}{1 + \frac{R}{R_L}} \frac{1}{\left(S\frac{RC}{1 + \frac{R}{R_L}} + 1\right)}$$

Its obvious that by changing the value of R_L the gain and cutoff frequency will be decreased by $\left(\frac{1}{1+\frac{R}{R_L}}\right)$ (c)

[Total Marks is 30]

	Inverting op Amp	Non-inverting				
Gain	Attenuation/Amplification	buffer / amplification				
Component	4 passive elements	3 passive elements				
Implementation Technology	-	adaptable (use resistors or capacitors				
Input Impedance	matching	∞				

2. Consider the magnitude plot in the next figure.

[10 marks] $[B_a, A_d, A_q]$

- (a) State the transfer function that express this plot. explain your answer briefly
- (b) Draw the corresponding phase diagram.
- (c) Find the circuit that will realize the given specifications. Find the proper values of the circuit components.

$$\begin{aligned} |T(S)| &= 1.58 \frac{\left(\frac{S}{100} + 1\right)\left(\frac{S}{400K} + 1\right)}{\left(\frac{S}{100} + 1\right)\left(\frac{S}{60K} + 1\right)} \\ |T(S)| &= 1.58 \frac{\left(\frac{S}{100} + 1\right)}{\left(\frac{S}{1000} + 1\right)} \times \frac{\left(\frac{S}{400K} + 1\right)}{\left(\frac{S}{60K} + 1\right)} = |T_1(S)| \times |T_2(S)| \\ |T_1(S)| &= \frac{\left(\frac{S}{100} + 1\right)}{\left(\frac{S}{1000} + 1\right)} \\ |T_2(S)| &= 1.58 \frac{\left(\frac{S}{400K} + 1\right)}{\left(\frac{S}{60K} + 1\right)} \end{aligned}$$

	Standered values of Capacitor																					
pF	1.2	1.3	1.5	1.6	1.8	2	2.2	2.4	2.7	3	3.3	3.6	3.9	4.3	4.7	5.1	5.6	6.2	6.8	7.5	8.2	9.1
	12	13	15	16	18	20	22	24	27	30	33	36	39	43	47	51	56	62	68	75	82	91
	120	130	150	160	180	200	220	240	270	300	330	360	390	430	470	510	560	620	680	750	820	910
	1200	1300	1500	1600	1800	2000	2200	2400	2700	3000	3300	3600	3900	4300	4700	5100	5600	6200	6800	7500	8200	9100
μF			0.015				0.022				0.033				0.047				0.068			
			0.15				0.22				0.33				0.47				0.68			
			1.5				2.2				3.3				4.7				6.8			
			15				22				33				47				68			
			150				220				330				470				680			
			1500				2200				3300				4700				6800			

By using the capacitor table:

- @ zero $R_2C_2 = \frac{1}{100}$ assume $C_2 = 200 pF \Rightarrow R_2 = 50K\Omega$
- @ pole $R_1C_1 = \frac{1}{1000}$ assume $C_1 = 200pF \Rightarrow R_1 = 5K\Omega$
- @ zero $R_2C_2 = \frac{1}{400K}$ assume $C_2 = 2.7pF \Rightarrow R_2 = 925.9\Omega$
- $gain = 1.58 = \frac{C_1}{C_2} \Rightarrow C_1 = 1.58C_2 = 1.58 \times 2.7pF = 4.266 \approx 4.3pF$
- @ pole $R_1C_1 = \frac{1}{60K}$ assume $C_1 = 4.3pF \Rightarrow R_1 = 3875.9\Omega$

- 3. Design a Sallen-Key low-pass filter with no peaking and $f_o = 12.5 kHz$:
- [10 marks] $[C_o, A_m]$
- (a) Draw the circuit diagram. Find the proper values of circuit components.
- (b) Plot the body plot of the designed Sallen-key.

- (c) Drive an expression that illustrates the effect of component tolerance on quality factor .
- (d) convert the previous circuit to be HPF with the same specifications.

