## ANSWER THE FOLLOWING QUESTIONS:

1. The passive filters have different disadvantages
[10 marks ] $\left[A_{a}, C_{p}\right]$
(a) Draw a first order LPF circuit and drive an expression for its transfer function $|T(S)|$.
(b) Briefly, discuss the loading problem; prove your answer by equations.
(c) Drive an expression for active first order LPF (single zero) by using inverting opamp. (include the wiring diagram to your answer).
(d) Compare and contrast between inverting and non-inverting realization topologies

Solution: Q1.(a)

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}} \overbrace{-}^{+} \mathbf{C}_{-}^{+} \\
& V_{o}=V_{i} \frac{\frac{1}{S c}}{R+\frac{1}{S c}} \\
& \frac{V_{o}}{V_{i}}=|T(S)|=\frac{1}{1+S R c}=\frac{1}{1+j \omega R c}
\end{aligned}
$$

(b) The characteristic equation of passive LPF will be affected by changing the value of the loading resistor

$$
\begin{aligned}
|T(S)|=\frac{R_{L}}{R_{L}+R} \frac{1}{\left(S \frac{R_{L} R C}{R_{L}+R}+1\right)} & \div R_{L} \\
|T(S)|=\frac{1}{1+\frac{R}{R_{L}}} \frac{1}{\left(S \frac{R C}{1+\frac{R}{R_{L}}}+1\right)} &
\end{aligned}
$$

Its obvious that by changing the value of $R_{L}$ the gain and cutoff frequency will be decreased by $\left(\frac{1}{1+\frac{R}{R_{L}}}\right)$
(c)

[Total Marks is 30]

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
| (d) | Inverting op Amp |  |  |  | Non-inverting |
|  | Gain | Attenuation/Amplification | buffer / amplification |  |  |
|  | Component | Implementation Technology | 4 passive elements |  |  |
|  | Input Impedance | matching | 3 passive elements |  |  |
|  |  |  | adaptable (use resistors or capacitors) |  |  |

2. Consider the magnitude plot in the next figure.
(a) State the transfer function that express this plot. explain your answer briefly
(b) Draw the corresponding phase diagram.
(c) Find the circuit that will realize the given specifications. Find the proper values of the circuit components.


## Solution:



- starting gain @ $4 \mathrm{~dB} \Rightarrow$ gain $=10^{\frac{4}{20}}=1.58$
- vertex @ 100 Hz with slop $20 \mathrm{~dB} /$ decade $\Rightarrow$ zero.
- vertex @ 1000 Hz with slop -20dB/decade $\Rightarrow$ pole.
- vertex @ 60 K Hz with slop $-20 \mathrm{~dB} /$ decade $\Rightarrow$ pole.
- vertex @ 400K Hz with slop $20 \mathrm{~dB} /$ decade $\Rightarrow$ zero.

$$
\begin{aligned}
& |T(S)|=1.58 \frac{\left(\frac{S}{100}+1\right)\left(\frac{S}{400 K}+1\right)}{\left(\frac{S}{1000}+1\right)\left(\frac{S}{60 K}+1\right)} \\
& |T(S)|=1.58 \frac{\left(\frac{S}{100}+1\right)}{\left(\frac{S}{1000}+1\right)} \times \frac{\left(\frac{S}{400 K}+1\right)}{\left(\frac{S}{60 K}+1\right)}=\left|T_{1}(S)\right| \times\left|T_{2}(S)\right| \\
& \left|T_{1}(S)\right|=\frac{\left(\frac{S}{100}+1\right)}{\left(\frac{S}{1000}+1\right)} \\
& \left|T_{2}(S)\right|=1.58 \frac{\left(\frac{S}{400 K}+1\right)}{\left(\frac{S}{60 K}+1\right)}
\end{aligned}
$$

| Standered values of Capacitor |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pF | 1.2 | 1.3 | 1.5 | 1.6 | 1.8 | 2 | 2.2 | 2.4 | 2.7 | 3 | 3.3 | 3.6 | 3.9 | 4.3 | 4.7 | 5.1 | 5.6 | 6.2 | 6.8 | 7.5 | 8.2 | 9.1 |
|  | 12 | 13 | 15 | 16 | 18 | 20 | 22 | 24 | 27 | 30 | 33 | 36 | 39 | 43 | 47 | 51 | 56 | 62 | 68 | 75 | 82 | 91 |
|  | 120 | 130 | 150 | 160 | 180 | 200 | 220 | 240 | 270 | 300 | 330 | 360 | 390 | 430 | 470 | 510 | 560 | 620 | 680 | 750 | 820 | 910 |
|  | 1200 | 1300 | 1500 | 1600 | 1800 | 2000 | 2200 | 2400 | 2700 | 3000 | 3300 | 3600 | 3900 | 4300 | 4700 | 5100 | 5600 | 6200 | 6800 | 7500 | 8200 | 9100 |
| $\mu \mathrm{F}$ |  |  | 0.015 |  |  |  | 0.022 |  |  |  | 0.033 |  |  |  | 0.047 |  |  |  | 0.068 |  |  |  |
|  |  |  | 0.15 |  |  |  | 0.22 |  |  |  | 0.33 |  |  |  | 0.47 |  |  |  | 0.68 |  |  |  |
|  |  |  | 1.5 |  |  |  | 2.2 |  |  |  | 3.3 |  |  |  | 4.7 |  |  |  | 6.8 |  |  |  |
|  |  |  | 15 |  |  |  | 22 |  |  |  | 33 |  |  |  | 47 |  |  |  | 68 |  |  |  |
|  |  |  | 150 |  |  |  | 220 |  |  |  | 330 |  |  |  | 470 |  |  |  | 680 |  |  |  |
|  |  |  | 1500 |  |  |  | 2200 |  |  |  | 3300 |  |  |  | 4700 |  |  |  | 6800 |  |  |  |

By using the capacitor table:

- @ zero $R_{2} C_{2}=\frac{1}{100}$ assume $C_{2}=200 \mathrm{pF} \Rightarrow R_{2}=50 \mathrm{~K} \Omega$
- @ pole $R_{1} C_{1}=\frac{1}{1000}$ assume $C_{1}=200 p F \Rightarrow R_{1}=5 K \Omega$
- @ zero $R_{2} C_{2}=\frac{1}{400 K}$ assume $C_{2}=2.7 p F \Rightarrow R_{2}=925.9 \Omega$
- gain $=1.58=\frac{C_{1}}{C_{2}} \Rightarrow C_{1}=1.58 C_{2}=1.58 \times 2.7 p F=4.266 \approx 4.3 p F$
- @ pole $R_{1} C_{1}=\frac{1}{60 K}$ assume $C_{1}=4.3 p F \Rightarrow R_{1}=3875.9 \Omega$


3. Design a Sallen-Key low-pass filter with no peaking and $f_{o}=12.5 \mathrm{kHz}$ :
[10 marks] $\left[C_{o}, A_{m}\right]$
(a) Draw the circuit diagram.Find the proper values of circuit components.
(b) Plot the body plot of the designed Sallen-key.
(c) Drive an expression that illustrates the effect of component tolerance on quality factor .
(d) convert the previous circuit to be HPF with the same specifications.

## Solution: (a)

no peaking means $\mathrm{Q}=0.707$

$\omega=\frac{1}{R C}=12.5 \mathrm{~K} \times 2 \pi=78.5 \mathrm{Krad} / \mathrm{s} \quad \quad$ assume $C=6.2 p F$

$$
R=\frac{1}{78.5 K \times C}=\frac{1}{78.5 K \times 6.2 p F}=2.1 \mathrm{~K} \Omega
$$

$$
K=1+\frac{R_{F}}{R}=3-\frac{1}{Q}=1.58
$$

$$
\therefore R_{F}=0.58 R=0.58 \times 100 K=58 K
$$

$$
\therefore R=100 K \Omega, R_{F}=58 K \Omega, C=2 p F, R=2.1 K \Omega
$$


(b) gain $=20 \log (1.58)=3.97, \omega=78.5 \mathrm{Krad} / \mathrm{s}$
sallen-key is second order with slop $-40 \mathrm{~dB} /$ decade

(c)

$$
\begin{aligned}
Q & =\frac{1}{(3-K)} \\
\frac{d Q(K)}{d K} & =\frac{1}{(3-K)^{2}}=Q^{2} \\
\therefore d Q(K)=Q^{2} d K & \\
& \frac{d Q(K)}{Q}=Q d K \\
& \\
\frac{d Q(K)}{Q}=K Q \frac{d K}{K} &
\end{aligned}
$$

(d)


