Scaling and Transformation

Dr. M. Shiple

Shaping Circuits (EEC 242), 2015

EEC 242

Outline

1) S

- Scaling
- Magnitude Scaling (Impedance Scaling)
- Frequency Scaling
- Full Normalization
- Normalization Examples

Frequency Transformation

- Lowpass-to-Highpass Transformation
- Examples
- Lowpass-to-Bandpass Transformation

Ladder filter

Filter Transformation

Section 1

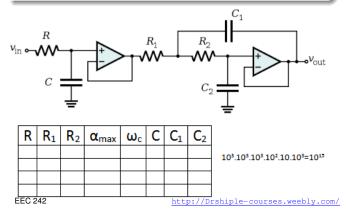
Scaling

Magnitude Scaling (Impedance Scaling)

Impedance Scaling

Magnitude scaling

is the process of increasing all impedances in a network by a factor, the frequency response remaining unchanged.



The impedance of passive components

$$Z_{R} = R \quad Z_{L} = SL \quad Z_{C} = \frac{1}{SC}$$

Let the frequency remain constant
$$Z'_{R} = K_{m}R \quad Z'_{L} = K_{m}SL \quad Z'_{C} = K_{m}\frac{1}{SC}$$

Therefore :

$$R' = K_m R$$
 $L' = k_m L$ $C' = \frac{C}{K_m}$

Test the frequency:

$$\omega'_{o} = \frac{1}{\sqrt{L'C'}} = \frac{1}{\sqrt{k_{m}L\frac{C}{K_{m}}}}$$
$$\omega'_{o} = \frac{1}{\sqrt{LC}} = \omega_{o}$$

EEC 242

Frequency Scaling

Scaling

Frequency Scaling

is the process of shifting the frequency response of a network up or down the frequency axis while leaving the impedance the same.

The impedance of passive components

$$Z_R = R$$
 (not affected by frequency) $Z_L = j\omega L$ $Z_C = \frac{1}{j\omega C}$

$$Z'_{L} = j(\omega K_{f})L \quad Z'_{C} = \frac{1}{j(\omega K_{f})C}$$

Therefore :

$$R' = R$$
 $L' = \frac{L}{K_f}$ $C' = \frac{C}{K_f}$

Test the frequency:

$$\omega_o' = \frac{1}{\sqrt{L'C'}} = \frac{1}{\sqrt{\frac{L}{K_f}\frac{C}{K_f}}}$$
$$\omega_o' = \frac{K_f}{\sqrt{LC}} = K_f \omega_o$$

EEC 242

http://Drshiple-courses.weebly.com/

1

Full Normalization

Magnitude and Frequency Scaling

The general normalize rule:

$$R=rac{R}{k_m}$$
 $L=rac{K_f}{K_m}L'$ $C=K_mK_fC'$

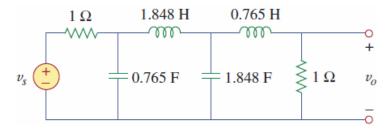
The general De-normalize rule:

$$R' = k_m R$$
 $L' = \frac{K_m}{K_f} L$ $C' = \frac{1}{K_m K_f} C$

Normalization Examples

Magnitude and Frequency Scaling

<u>Q1</u>: A fourth order lowpass filter is shown. The filter is designed such that the cutoff frequency $\omega_o = 1 rad/s$. Scale the circuit for a cutoff frequency of 50 kHz using $10 k\Omega$ resistors.



Magnitude and Frequency Scaling

<u>Q1</u>: A fourth order lowpass filter is shown. The filter is designed such that the cutoff frequency $\omega_o = 1 rad/s$. Scale the circuit for a cutoff frequency of 50 kHz using $10 k\Omega$ resistors.

$$\omega_c' = 2\pi (50k) = 100k\pi$$

$$k_f = \frac{\omega_c'}{\omega_o} = \frac{100k\pi}{1} = \pi \times 10^5 \quad k_m = \frac{10k}{1} = 10k$$
Therefore : $R' = k_m R = 10k\Omega$

$$L'_1 = \frac{K_m}{k_f} L = \frac{10^4}{\pi \times 10^5} (1.848) = 58.82mH$$

$$L'_2 = \frac{10^4}{\pi \times 10^5} (0.765) = 24.35mH$$

$$C'_1 = \frac{1}{K_f K_m} C = \frac{1}{\pi \times 10^9} 0.765 = 243.5pF$$

$$C'_2 = \frac{1}{K_f K_m} C = \frac{1}{\pi \times 10^9} 1.848 = 588.2pF$$

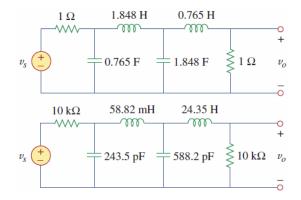
$$K_{\rm http://Drshiple-courses.webly.com/}$$

EEC 242

Scaling

Normalization Examples

Example 1

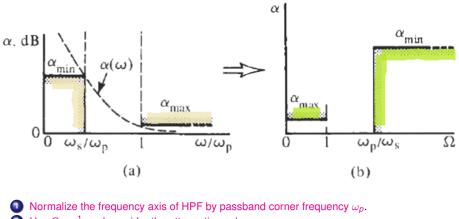


Section 2

Frequency Transformation

Lowpass-to-Highpass Transformation

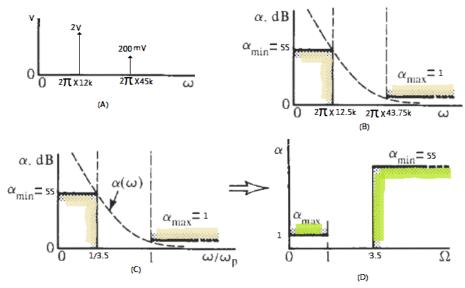
LP-HP procedure:



Use $\Omega = \frac{1}{\omega}$ and consider the attenuation values. Find the degree n of LPF. Compute the LPF transfer function $T_L(S)$. Compute the HPF transfer function $T_H(S)$ by replacing S by $\frac{1}{S}$. Realize $T_H(S)$. EEC 242

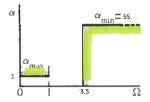
Examples

Example 1:



http://Drshiple-courses.weebly.com/

Example 1:



3

$$n = \frac{\log\left(\frac{(10^{\frac{\alpha_{min}}{0}} - 1)}{(10^{\frac{\alpha_{max}}{0}} - 1)}\right)}{2\log\frac{\omega_S}{\omega_P}} = 5.5 \approx 6$$
(1)

$$\varepsilon = \sqrt{\left(10^{\frac{\alpha_{max}}{10}} - 1\right)} = 0.51\tag{2}$$

$$\omega_B = \varepsilon^{\frac{-1}{n}} \omega_\rho = 1.12 \text{rad/sec} \tag{3}$$

$$R_1 = R_2 = \frac{1}{\omega_B C} = 0.89\Omega \qquad \text{assume } c = 1F \qquad (4)$$

EEC 242

http://Drshiple-courses.weebly.com/

21

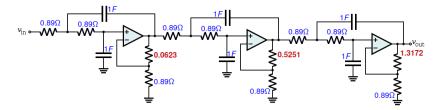
Example 1 (Cont.):

4

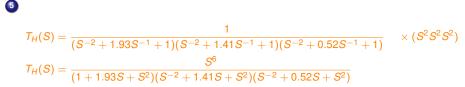
•

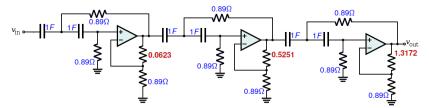
$$T_L(S) = \frac{1}{(S^2 + 1.93S + 1)(S^2 + 1.41S + 1)(S^2 + 0.52S + 1)}$$

$\frac{1}{Q}$	Qn	К	$R_F = (k-1)R$
1.93	0.518135	1.07	0.0623
1.41	0.70922	1.59	0.5251
0.52	1.923077	2.48	1.3172



Example 1 (Cont.):



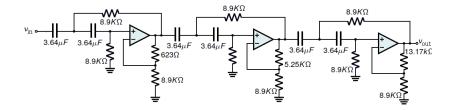


6 Realize $T_H(S)$.

 $R = k_m R \Rightarrow R = 8.9K\Omega \quad R_{f1} = 623\Omega \quad R_{f2} = 5.25K\Omega \quad R_{f1} = 13.17k\Omega \quad \because K_M = 10K$ $C = \frac{1}{K_m K_F} C = \frac{1}{10k \cdot 2\pi 43.75k} = 3.64\mu F$

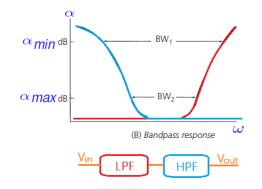
EEC 242

Example 1 (Cont.):

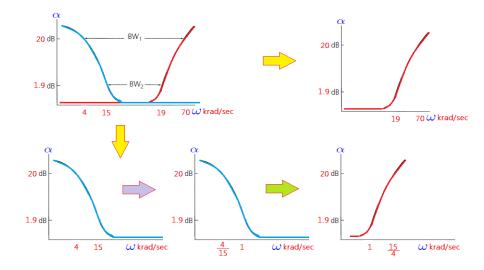


Lowpass-to-Bandpass Transformation

LP-BP procedure:



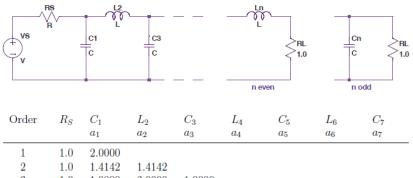
Example 1:



Section 3

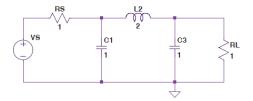
Ladder filter

Normalized Filters



3	1.0	1.0000	2.0000	1.0000				
4	1.0	0.7654	1.8478	1.8478	0.7654			
5	1.0	0.6180	1.6180	2.0000	1.6180	0.6180		
6	1.0	0.5176	1.4142	1.9319	1.9319	1.4142	0.5176	
7	1.0	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450

Normalized Filters

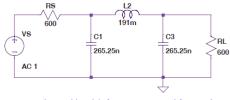


Examples

Design a Butterworth LPF of order n = 3 with -3dB frequency fr = 1 kHz and $RS = RL = 600\Omega$.

Solution: We find that $\omega_r = 2\pi 1000 = 6283.2 rad/s$.

Order	<i>k</i> _m	<i>k</i> _f	Rule	Realization
RS	600	6283.2	k _m R _n	600Ω
C1	600	6283.2	$\frac{1}{k_m k_f} L_n$	265.25 <i>nF</i>
L2	600	6283.2	$\frac{k_m}{k_f}L_n$	191 <i>mH</i>
C3	600	6283.2	$\frac{1}{k_m k_f} L_n$	265.25 <i>nF</i>
RL	600	6283.2	$k_m R_n$	600Ω



http://Drshiple-courses.weebly.com/

Filter Transformation

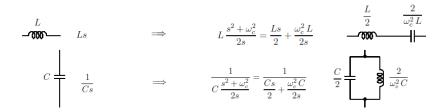
LPF to HPF

The substitution $s = \frac{1}{s}$ affects the C and L elements of the LPF as follows:

$$Z_C = \frac{1}{sC} \Rightarrow Z_C = \frac{1}{\frac{1}{sC}} = s\frac{1}{C} \quad (C \Rightarrow L = \frac{1}{C})$$
$$Z_L = sL \Rightarrow Z_C = \frac{1}{s}L = \frac{L}{s} \quad (L \Rightarrow C = \frac{1}{L})$$

LPF to BPF

The substitution $s = \frac{s^2 + \omega_c^2}{2s}$ affects the C and L elements of the LPF as follows:



Filter Transformation

Example

Example: Butterworth BPF of order n = 6 with bandwidth 100 kHz, center frequency $f_c = 1$ MHz, and $R_S = R_L = 50$. Start from a normalized Butterworth LPF of order n = 3 with $C_1 = C_3 = 1$ F and $L_2 = 2H$. Then use frequency and impedance scaling factors

