Introduction	Low Pass Filter	High Pass Filter	Bandpass Filter	Summary
0	0 00000	00	00	

Second Order Analog Filters

Dr. M. Shiple

Shaping Circuits (EEC 242), 2015

Introduction	Low Pass Filter	High Pass Filter	Bandpass Filter	Summary
0	0 00000	000	00	

Outline

Introduction

Second order Circuit

Low Pass Filter

Transfer Function Frequency Response

High Pass Filter

Transfer Function Frequency Response

Bandpass Filter

Transfer Function Frequency response

Summary

EEC 242

Introduction •	Low Pass Filter o ooooo	High Pass Filter	Bandpass Filter	Summary

Second order Circuit

Example

Find the transfer function.

$$T(S) = \frac{Z_1}{Z_1 + Z_2}$$

Hint: By changing Z_1 , Numerator will take different forms and denominator will kept static.

Introduction o	Low Pass Filter	High Pass Filter	Bandpass Filter	Summary
Transfer Function				

cont.

$$H(S) = \frac{\frac{1}{Sc}}{R + SL + \frac{1}{Sc}} \qquad H(S) = \frac{1}{S^2LC + SCR + 1} \div LC$$
$$SL + \frac{1}{Sc} = 0 \qquad \qquad = \frac{\frac{1}{LC}}{S^2 + S\frac{R}{L} + \frac{1}{LC}}$$
$$= \frac{\omega_0^2}{S^2 + S\frac{\omega_0}{Q} + \omega_0^2}$$
$$\omega_0 = \frac{1}{\sqrt{LC}} \qquad (1)$$
Band width $= \beta = \frac{R}{L} \qquad (2)$ Quality factor $= Q = \frac{\omega_0}{\beta} \qquad (3)$

Introduction	Low Pass Filter	High Pass Filter	Bandpass Filter	Summary
0	_ ●0000	00	00	

EEC 242

Magnitude and phase

• Replace ALL S by $j\omega$

$$H(S) = \frac{\omega_0^2}{S^2 + S\frac{\omega_0}{Q} + \omega_0^2}$$
$$T(j\omega) = \frac{\omega_0^2}{(j\omega)^2 + j\omega\frac{\omega_0}{Q} + \omega_0^2}$$
$$|T(j\omega)| = \frac{\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + (\omega\frac{\omega_0}{Q})^2}}$$
$$\phi(j\omega) = -\tan^{-1}\frac{\omega\frac{\omega_0}{Q}}{\omega_0^2 - \omega^2}$$

0 00 00	
0000 000 00	

Frequncy response (FS) graph

$$|T(j\omega)| = rac{\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + (\omega rac{\omega_0}{Q})^2}}$$

1. @
$$\omega = zero \Rightarrow$$

 $|T(j\omega)| = \frac{\omega_0^2}{\sqrt{(\omega_0^2)^2}} = 1$
2. @ $\omega = \omega_0 \Rightarrow$
 $|T(j\omega)| = \frac{\omega_0^2}{\sqrt{(\frac{\omega_0^2}{\Omega})^2}} = Q$

$$\phi(j\omega) = -\tan^{-1}\frac{\omega \frac{\omega_0}{Q}}{\omega_0^2 - \omega^2}$$

1. @
$$\omega = zero \Rightarrow \phi = 0$$

2. @ $\omega = \omega_0 \Rightarrow \phi = -90$
3. @ $\omega = \infty \Rightarrow \phi = -180$

EEC 242

Introduction	Low Pass Filter	High Pass Filter	Bandpass Filter	Summary
0	0 00000	00	00	

Effect of **Q**

Introduction	Low Pass Filter	High Pass Filter	Bandpass Filter	Summary
0	_ 000●0	00	00	

Effect of Q (Magnitude)

Hint: at Q = 0.707 (Flat magnitude) $\omega_0 = \omega_c$

EEC 242

0 00 00	
0000 ● 000 00	00 00 000 00

Effect of Q (phase)

Hint: @ ALL Q $\phi = 0$ @ $\omega = 0$ and $\phi = -90$ @ $\omega = \omega_0$

Introduction o	Low Pass Filter o ooooo	High Pass Filter ●○ ○○○	Bandpass Filter oo oo	Summary

Transfer Function

Example

Find the transfer function.

$$T(S) = \frac{Z_1}{Z_1 + Z_2}$$

Hint: By changing Z_1 , Numerator will take different forms and denominator will kept static.

Introduction O	Low Pass Filter o ooooo	High Pass Filter ○● ○○○	Bandpass Filter	Summary

Transfer Function

cont.

$$H(S) = \frac{SL}{R + SL + \frac{1}{Sc}} \qquad H(S) = \frac{S^2LC}{S^2LC + SCR + 1} \quad \div LC$$
$$SL + \frac{1}{Sc} = 0 \qquad \qquad = \frac{S^2}{S^2 + S\frac{R}{L} + \frac{1}{LC}}$$
$$= \frac{S^2}{S^2 + S\frac{M}{Q} + \omega_0^2}$$
$$\omega_0 = \frac{1}{\sqrt{LC}} \quad (4) \qquad \qquad = \frac{S^2}{S^2 + S\frac{\omega_0}{Q} + \omega_0^2}$$
Band width $= \beta = \frac{R}{L} \quad (5) \qquad$ Quality factor $= Q = \frac{\omega_0}{\beta} \quad (6)$

Introduction O	Low Pass Filter o ooooo	High Pass Filter ○○ ●○○	Bandpass Filter	Summary

Magnitude and phase

• Replace ALL S by $j\omega$

$$H(S) = \frac{s^2}{S^2 + S\frac{\omega_0}{Q} + \omega_0^2}$$
$$T(j\omega) = \frac{(j\omega)^2}{(j\omega)^2 + j\omega\frac{\omega_0}{Q} + \omega_0^2}$$
$$|T(j\omega)| = \frac{-\omega^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + (\omega\frac{\omega_0}{Q})^2}}$$
$$\phi(j\omega) = 180 - \tan^{-1}\frac{\omega\frac{\omega_0}{Q}}{\omega_0^2 - \omega^2}$$

Introduction	Low Pass Filter	High Pass Filter	Bandpass Filter	Summary
0	0 00000		00	

Frequncy response (FS) graph

$$|T(j\omega)| = rac{\omega^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + (\omega rac{\omega_0}{Q})^2}}$$

1.
$$@ \omega = zero \Rightarrow$$

 $|T(j\omega)| = 0$

2. @
$$\omega = \omega_0 \Rightarrow$$

 $|T(j\omega)| = \frac{\omega_0^2}{\sqrt{(\frac{\omega_0^2}{Q})^2}} = Q$

$$\phi(j\omega) = 180 - \tan^{-1} \frac{\omega \frac{\omega_0}{Q}}{\omega_0^2 - \omega^2}$$

1. @
$$\omega = zero \Rightarrow \phi = 180$$

2. @ $\omega = \omega_0 \Rightarrow \phi = 90$
3. @ $\omega = \infty \Rightarrow \phi = 0$

Introduction	Low Pass Filter	High Pass Filter	Bandpass Filter	Summary
0	0 00000	00 00	00	

Effect of Q (Magnitude)

Hint: at Q = 0.707 (Flat magnitude) $\omega_0 = \omega_c$

Introduction	Low Pass Filter	High Pass Filter	Bandpass Filter	Summary
0	0 00000	00	•0 00	

Transfer Function

Example

- Find the transfer function.
- compute magnitude, phase.

The BPF cct.:

Introduction O	Low Pass Filter o ooooo	High Pass Filter	Bandpass Filter ○● ○○	Summary
Transfer Function				

cont.

Introduction	Low Pass Filter	High Pass Filter	Bandpass Filter	Summary
0	0 00000	00	00 •0	

Max. and Min. Frequencies

Introduction	Low Pass Filter	High Pass Filter	Bandpass Filter	Summary
0	0 00000	00	00	

Max. and Min. Frequencies

Introduction O	Low Pass Filter o ooooo	High Pass Filter	Bandpass Filter oo oo	Summary

