Oscillators

Dr. M. Shiple

Shaping Circuits (EEC 242), 2015

Outline

(1) Basic Principles of Oscillator
(2) Sinusoidal Oscillators

- Phase Shift Oscillator
- Wien-Bridge Oscillator
- Active Filter Oscillators
- LC tuned circuits
- Quartz Crystals
(3) Non-Sinusoidal Oscillators
- Square Oscillator

Introduction

Oscillation Conditions(Barkhausen Criterion)

$$
\begin{aligned}
v_{d} & =v_{i}+v_{f} \\
v_{d} & =v_{i}+\beta v_{o} \\
V_{o} & =A V_{d} \\
V_{o} & =A v_{i}+A \beta V_{o} \\
\frac{V_{o}}{v_{i}} & =\frac{A}{1-A \beta} \\
\frac{V_{o}}{v_{i}} & =\infty \Rightarrow 1-A \beta=0 \\
& \Rightarrow A \beta=1
\end{aligned}
$$

with no input
loop gain

$$
\begin{align*}
& |\beta(j \omega) A(j \omega)|=1 \tag{1}\\
& \angle(\beta(j \omega) A(j \omega))=0^{\circ}= \pm n 360^{\circ} \tag{2}
\end{align*}
$$

Heinrich Barkhausen
1881-1956
Professor Technische Hochschule Dresden

Loop Phase Shift

For oscillation to begin, the voltage gain around the positive feedback loop must be >1 so that the amplitude of the output can build up to a desired level. The gain must then <1 so that the output stays at the desired level and oscillation is sustained. Initially, a small positive feedback voltage develops from thermally produced noise in the resistors/other components/from power supply turn-on transients.

Introduction

$$
\begin{aligned}
\frac{v_{1}}{v_{l}} & =\frac{R}{R+\frac{1}{s c}}=\frac{s R c}{s R C+1} \quad \text { RC networks are identical } \\
\frac{v_{3}}{v_{l}} & =\left(\frac{s R c}{s R C+1}\right)^{3}=\beta \\
A=\frac{v_{0}}{v_{3}} & =\frac{-R_{2}}{R} \quad \text { EEC } 242
\end{aligned}
$$

Phase Shift Oscillator: Analysis

Apply Barkhuasen conditions:
(1) unity gain $A \beta=1$

$$
\begin{aligned}
& |T(j \omega)|=A \beta=\frac{\left(\frac{R_{2}}{R}\right) j \omega R c(\omega R c)^{2}}{\left[1-3(\omega R c)^{2}\right]+j \omega R c\left[3-(\omega R c)^{2}\right]}=1 \\
& \therefore \text { real }=\text { real \& img }=\mathrm{img} \\
& \therefore 1-3(\omega R c)^{2}=0 \Rightarrow \omega_{o}=\frac{1}{\sqrt{3} R c} \\
& \left(\frac{R_{2}}{R}\right) j \omega R c(\omega R c)^{2}=j \omega R c\left[3-(\omega R c)^{2}\right] \\
& \left(\frac{R_{2}}{R}\right)(\omega R c)^{2}=\left[3-(\omega R c)^{2}\right] \\
& \quad(\omega R c)^{2} \frac{R_{2}}{R}=3
\end{aligned}
$$

$$
\text { by using } \omega_{0}
$$

Phase Shift Oscillator: Analysis 2

Apply Barkhuasen conditions:
(2) in Phase $\angle A \beta=0$

$$
\begin{aligned}
\angle T(j \omega) & =\angle A \beta=\angle \frac{\left(\frac{R_{2}}{R}\right) j \omega R c(\omega R c)^{2}}{\left[1-3(\omega R c)^{2}\right]+j \omega R c\left[3-(\omega R c)^{2}\right]} \\
& =\tan ^{-1}\left(\frac{\omega R c(\omega R c)^{2}}{0}\right)-\tan ^{-1}\left(\frac{\omega R c\left[3-(\omega R c)^{2}\right]}{\left[1-3(\omega R c)^{2}\right]}\right) \\
& =90-\tan ^{-1}\left(\frac{\omega R c\left[3-(\omega R c)^{2}\right]}{\left[1-3(\omega R c)^{2}\right]}\right) \\
& \text { to keep phase }=0 \Rightarrow\left[1-3(\omega R c)^{2}=0\right] \\
& 1-3(\omega R c)^{2}=0 \Rightarrow \omega_{0}=\frac{1}{\sqrt{3} R c}
\end{aligned}
$$

Phase Shift Oscillator: Example

Example 1

Determine the oscillation frequency and required amplifier gain for a phase-shift oscillator. parameters $C=0.1 \mu \mathrm{~F}$ and $R=1 \mathrm{k} \Omega$.

$$
\begin{aligned}
& f_{o}=\frac{1}{2 \pi \sqrt{3} R c}=\frac{1}{2 \pi \sqrt{3} 0.1 \mu 1 k}=919 \mathrm{~Hz} \\
& R_{2}=8 R=8 * 1 \mathrm{k}=8 \mathrm{~K} \Omega
\end{aligned}
$$

Example 2

Design the phase-shift oscillator to oscillate at $f 0=22.5 \mathrm{kHz}$. The minimum resistance to be used is $10 \mathrm{k} \Omega$.

Phase Shift Oscillator

$$
\begin{gathered}
\omega_{0}=\frac{1}{\sqrt{6} R c} \\
R_{2}=29 R
\end{gathered}
$$

Introduction

$$
\begin{aligned}
& \frac{v_{1}}{v_{o}}=\frac{Z_{p}}{Z_{p}+Z_{s}} \\
& v_{o}=\left(1+\frac{R_{2}}{R_{1}}\right) v_{y} \\
& \frac{v_{o}}{v_{l}}=\left(1+\frac{R_{2}}{R_{1}}\right) \frac{Z_{p}}{Z_{p}+Z_{s}} \\
& Z_{p}=\frac{R}{1+S c R} \\
& Z_{s}=\frac{1+S c R}{S c}
\end{aligned}
$$

$$
T(S)=\left(1+\frac{R_{2}}{R_{1}}\right) \frac{1}{3+S R c+\frac{1}{S R C}}
$$

Wien-Bridge Oscillator: Analysis

Apply Barkhuasen conditions:
(1) unity gain $A \beta=1$

$$
\begin{aligned}
|T(j \omega)| & =A \beta=T(S)=\left(1+\frac{R_{2}}{R_{1}}\right) \frac{1+j 0}{3+S R c+\frac{1}{S R c}}=1 \\
& \therefore \text { real }=\text { real \& img=img } \\
& \therefore S R c+\frac{1}{S R c}=0 \Rightarrow \omega_{0}=\frac{1}{R c} \\
& \left(\frac{R_{2}}{R}\right)\left(\frac{1}{3}\right)=1 \\
& R_{2}=2 R
\end{aligned}
$$

Wien-Bridge Oscillator: Analysis 2

Apply Barkhuasen conditions:
(2) in Phase $\angle A \beta=0$
by using ω_{0}

$$
\begin{aligned}
\angle T(j \omega) & =\angle A \beta=\angle\left(1+\frac{R_{2}}{R_{1}}\right) \frac{1+j 0}{3+S R c+\frac{1}{S R c}} \\
& =\tan ^{-1}\left(\frac{0}{\frac{R_{2}}{R_{1}}}\right)-\tan ^{-1}\left(\frac{0}{3}\right)=0
\end{aligned}
$$

Wien-Bridge Oscillator: Root locus

$$
\begin{aligned}
& T(j \omega)=1-A \beta=T(S)=1-\frac{A}{3+S R c+\frac{1}{S R c}} \\
& S^{2}+(3-A) \omega_{o} S+\omega_{o}^{2}=0 \\
& S=\frac{-(3-A) \omega_{o} \pm \sqrt{\left((3-A) \omega_{0}\right)^{2}-4 \omega_{0}^{2}}}{2} \\
& A= \begin{cases}0 \longrightarrow 1 & \text { real } \\
1<A<3 & \text { Complex } \\
A=3 & \text { imagenary }\end{cases}
\end{aligned}
$$

Wien-bridge Oscillator: Example

Example 1

Determine the oscillation frequency and required amplifier gain for a Wien-bridge oscillator. parameters $C=0.02 \mu F$ and $R=10 \mathrm{k} \Omega$.

Example 2

Design the Wien-bridge oscillator to oscillate at $f 0=20 \mathrm{kHz}$. The minimum resistance to be used is $10 \mathrm{k} \Omega$.

Introduction

$\left.\angle T(S)\right|_{\text {inverting op amp }}=180$

Therefore the yellow and green block must have phases equal ?? The overall gain $A_{v 1} A_{v 2} A_{v 3}=$?
Could you suggest circuits that realize the previous conditions!!

Active Filter Oscillators

To get -90° phase, we need $\frac{1}{s}$ which represent LPF. $180-90-90=0$ The overall gain $A_{v 1} A_{v 2} A_{v 3}=$?

$$
\begin{aligned}
\beta A_{v 1} A_{v 2} A_{v 3} & =1 \\
-\frac{R_{2}}{R_{1}}\left(\frac{1}{s R C}\right)^{2} & =1 \Rightarrow \omega_{o}=\frac{1}{R C} \sqrt{\frac{R_{2}}{R_{1}}}
\end{aligned}
$$

Active Filter Oscillator: Example

Example 1

Design the Active Filter oscillator to oscillate at $f 0=20 \mathrm{kHz}$. The minimum resistance to be used is $10 \mathrm{k} \Omega$.

Analysis 1

By using KCL(Colpitts):

$$
\begin{aligned}
& \frac{V_{o}}{\frac{1}{S C_{1}}}+\frac{V_{o}}{R}+g_{m} V_{g s}+\frac{V_{o}}{S L+\frac{1}{S C_{2}}}=0 \\
& V_{g s}=\frac{V_{o} \frac{1}{S C_{2}}}{S L+\frac{1}{S C_{2}}}=\frac{V_{o}}{S^{2} L C_{2}+1}
\end{aligned}
$$

$$
V_{o}\left[S C_{1}+\frac{1}{R}+\frac{g_{m}}{S^{2} L C_{2}+1}+\frac{1}{S L+\frac{1}{S C_{2}}}\right]=0
$$

If oscillation has started, then $V o \neq 0$
$\therefore S C_{1}+\frac{1}{R}+\frac{g_{m}}{S^{2} L C_{2}+1}+\frac{S C_{2}}{S^{2} L C_{2}+1}=0$
$\left(S^{2} L C_{2}+1\right)\left(S C_{1}+\frac{1}{R}\right)+g_{m}+S C_{2}=0$
$S^{3} L C_{1} C_{2}+S^{2} \frac{L C_{2}}{R}+S\left(C_{1}+C_{2}\right)+\left(g_{m}+\frac{1}{R}\right)=0$
$\left[g_{m}+\frac{1}{R}-\omega^{2} \frac{L C_{2}}{R}\right]+j \omega\left[\left(C_{1}+C_{2}\right)-\omega^{2} L C_{1} C_{2}\right]=0$

Colpitts Oscillator
Edwin Henry Colpitts (1872 - 1949). Canada

Hartley Oscillator
Ralph Vinton Lyon Hartley
(1888-1970) United States

Analysis 2

By using KCL(Colpitts):

$$
\left[g_{m}+\frac{1}{R}-\omega^{2} \frac{L C_{2}}{R}\right]+j \omega\left[\left(C_{1}+C_{2}\right)-\omega^{2} L C_{1} C_{2}\right]=0
$$

Edwin Henry Colpitts (1872 - 1949). Canada
$g_{m}+\frac{1}{R}-\omega^{2} \frac{L C_{2}}{R}=0$
From 3:

$$
\begin{aligned}
& \omega\left[\left(C_{1}+C_{2}\right)-\omega^{2} L C_{1} C_{2}\right]=0 \\
& \omega^{2}=\frac{1}{L \frac{C_{1} C_{2}}{C_{1}+C_{2}}}=\frac{1}{L C_{T}} \Rightarrow \omega=\frac{1}{\sqrt{L C_{T}}} \\
& \because C_{T}=C_{1} \| C_{2}
\end{aligned}
$$

From 4:

$$
\frac{C_{2}}{C_{1}}=g_{m} R
$$

Analysis 3

Colpitts Oscillator

Edwin Henry Colpitts (1872 - 1949), Canada

Hartley Oscillator
Ralph Vinton Lyon Hartley
(1888-1970) United States

By using KCL(Hartley):

$$
\begin{aligned}
& \omega=\frac{1}{\sqrt{C L_{T}}} \\
& \because L_{T}=L_{1}+L_{2}
\end{aligned}
$$

LC Tuning circuit: Example

Example 1

For the Colpitts oscillator, assume parameters of $L=1 \mu H, C_{1}$ and $C_{2}=1 \mathrm{nF}$, and $R=4 \mathrm{k} \Omega$. Determine the oscillator frequency and the required value of g_{m}. (Ans. $f_{o}=7.12 \mathrm{MHz}, g_{m}=0.25 \mathrm{~mA} / \mathrm{V}$)

Piezoelectric Effect

When an ac voltage is applied across them, they vibrate at the frequency of the applied voltage. Conversely, if they forced to mechanically vibrate, they generate an ac voltage of the same frequency. This phenomenon is called "Piezoelectric".

AC Equivalent Circuit

(a) Typical packaged crystal

(b) Basic construction (without case)

(c) Symbol

(d) Electrical equivalent

Cm (mounting capacitance): presents the two metal plates separated by a dielectric.
L,C,R: represent the motion of the crystal (since $L=$ the electrical equivalent of the crystal mass, $\mathrm{C}=$ the crystal stiffness or elasticity, and $\mathrm{R}=$ the heat losses due to mechanical friction in the crystal).

$$
Z(s)=\frac{S^{2}+S \frac{R}{L}+\frac{1}{L C}}{S c_{m}\left[S^{2}+S \frac{R}{L}+\left(1+\frac{C}{C_{m}}\right) \frac{1}{L C}\right]}
$$

Resonant Frequencies

$$
\begin{aligned}
Z(s) & =\frac{S^{2}+S \frac{R}{L}+\frac{1}{L C}}{S c_{m}\left[S^{2}+S \frac{R}{L}+\left(1+\frac{C}{C_{m}}\right) \frac{1}{L C}\right]} \\
& =\frac{S^{2}+S \frac{\omega_{s}}{Q}+\omega_{s}^{2}}{S c_{m}\left[S^{2}+S \frac{\omega_{s}}{Q}+\omega_{p}^{2}\right]}
\end{aligned}
$$

It is clear there are two frequencies (series resonance $=\omega_{s}^{2}$, parallel resonance $=\omega_{s}^{2}$)

$$
\begin{aligned}
& \omega_{s}=\frac{1}{\sqrt{L C}} \\
& \omega_{p}=\frac{1}{\sqrt{L C_{T}}} \quad \because C_{T}=C \| C_{m}
\end{aligned}
$$

$\underset{\text { EEC } 242}{Q}=\frac{\omega_{S} L}{R}=\frac{1}{R} \sqrt{\frac{L}{C}}$

Pulling Range Δf

$$
\Delta f=f_{p}-f_{s} \approx f_{s}\left(\frac{C}{2 C_{m}}\right)
$$

Two figures of merit used in Data-sheets r and M : The parameter r is defined as

$$
\begin{aligned}
r & =\frac{C_{m}}{C} \\
M & =Q r=\frac{1}{\omega_{s} R C_{m}}
\end{aligned}
$$

It provides a measure of the separation between f_{s} and f_{a}

Crystal Oscillator: Example

Example 1

Consider a $2-\mathrm{MHz}$ series resonant crystal described by $L=0.528 H, C=0.011993 p F, R=100 \Omega$, and $C_{m}=4 p F$. Calculate the series-resonance frequency f_{s}, the parallel-resonant frequency f_{p}, and the crystal Q . Also, calculate the figure of merits r and M .
(Ans. $f_{s}=2.000042 \mathrm{MHz}, f_{p}=2.003051 \mathrm{MHz}, Q=66,350$, $\Delta f=3 \mathrm{kHz}, \mathrm{r}=333.5$, and $\mathrm{M}=199$)

Types of Crystal Oscillators

- XO: A crystal oscillator is a quartz crystal packaged with its oscillator circuitry.
- VCXO: A voltage-controlled crystal oscillator is an XO but optimized for external frequency control by way of a dc input (application: PLL).
- TCXO: A temperature-compensated crystal oscillator is one that incorporates circuitry to compensate for the frequency variations that accompany temperature variations (application: Cell phone).
- OCXO: An oven-compensated crystal oscillator puts the crystal and sometimes the whole oscillator circuit in a small oven. A dc heating element in a feedback loop keeps the temperature virtually constant, giving a very precise and stable output frequency.

Frequency Accuracy

Measures of how close the crystal frequency is to the desired value. It is often expressed as a percentage deviation from the specifi ed frequency or in parts per million (ppm).

Example

A 10MHz Crystal oscillator has an accuracy of 100 ppm . calculate the tolerance of this oscillator:

$$
\frac{100}{1,000,000} \times 10,000,000=1000 \mathrm{~Hz}
$$

Relaxation Oscillators (Introduction)

Op-amp Schmitt Comparator:

$$
\begin{aligned}
V_{\text {Ref }}=V^{+} & =V_{o} \frac{R_{1}}{R_{1}+R_{2}}=\beta V_{o} \\
V_{o} & = \begin{cases}V_{s}^{+}=V_{D D}-1 & V_{i n}>V_{\text {Ref }} \\
V_{s}^{-}=V_{S S}+1 & V_{i n}<V_{\text {Ref }}\end{cases}
\end{aligned}
$$

Relaxation Oscillators Using Operational Amplifiers

To find oscillation frequency:

$$
\begin{gathered}
v_{c}=A+B e^{-\frac{t-t_{a}}{R C}} \\
\left.v_{c}\right|_{\left(t=t_{a}\right)}=-v_{R e f}=A+B \\
\left.v_{c}\right|_{(t=\infty)}=v_{R e f}=A \\
\because V_{R e f}=V_{o} \frac{R_{1}}{R_{1}+R_{2}} \\
=0.5 V_{o}=0.5 V_{s}^{-} \\
\therefore-0.5 V_{s}^{-}=A+B \quad \& V_{s}=A \\
\therefore B=-\frac{3}{2} V_{s} \\
V_{c}=V_{s}\left(1-\frac{3}{2} e^{\left.-\frac{t-t_{a}}{R C}\right)}\right.
\end{gathered}
$$

Relaxation Oscillators Using Operational Amplifiers

To find oscillation frequency:

$$
v_{c}=v_{s}\left(1-\frac{3}{2} e^{-\frac{t-t_{a}}{A c}}\right)
$$

$$
0.5 V_{s}=V_{s}\left(1-\frac{3}{2} e^{-\frac{t_{b}-t_{a}}{R C}}\right)
$$

$$
0.5=-\frac{3}{2} e^{-\frac{t_{b^{2}-t_{a}}}{R C}}
$$

$$
\ln (3)=\frac{t_{b}-t_{a}}{R C}
$$

$$
\left(t_{b}-t_{a}\right)=\ln (3) R C
$$

$$
T=2\left(t_{b}-t_{a}\right)=2.197 R C \approx 2.2 R C
$$

$$
T=2 R C \ln \left(1+\frac{2 R_{1}}{R_{2}}\right)
$$

Example

Design the relaxation oscillator to oscillate at 8 kHz . Solution:
Let $R_{1}=R_{2}=10 \mathrm{k} \Omega$ and $C=10 \mathrm{nF} . R=\frac{1}{2.2 C f}=5.68 \mathrm{k} \Omega$

