ANSWER THE FOLLOWING QUESTIONS:

1. Consider the inverting Op Amp circuit in the next figure.
[15 marks] $\left[A_{a}, C_{p}\right]$
(a) Drive an expression for the characteristic equation. Define the function of this circuit.
(b) Briefly, discuss the effects of the pole locations.
(c) Reconnect C_{2} to be shunted across R_{2}. Drive an expression for the new structure.[Hint: arrange the equation in form to be drawn by bode plot]
(d) Calculate the component values to realize a zero at $f_{z}=830 \mathrm{~Hz}$, pole at $f_{p}=2 k H z$, and a high frequency gain of 6.36 dB . [Hint: $C_{1}=50 \mathrm{nF}$]
(e) Draw the bode plot of the characteristic equation of the previous item.

Solution: Q1.(a)

$$
\begin{aligned}
& Z_{F}=\frac{1}{S C_{2}}+R_{2}=\frac{S R_{2} C_{2}+1}{S C_{2}} \\
& Z_{i}=\frac{\frac{1}{S C_{1}} R_{1}}{\frac{1}{S C_{1}}+R_{1}}=\frac{R_{1}}{S C_{1} R_{1}+1} \\
& \text { inverting Op Amp gain }=-\frac{Z_{F}}{Z_{i}} \\
& \therefore \frac{V_{o}}{V_{i}}=\frac{\frac{S C_{2}+R_{2}}{S C_{2}}}{\frac{R_{1}}{S C_{1} R_{1}+1}}=\frac{\left(S R_{2} C_{2}+1\right)\left(S C_{1} R_{1}+1\right)}{S C_{2} R_{1}}
\end{aligned}
$$

(b) The characteristic equation of previous circuit will be affected by poles location since we have two poles @ $0, \infty$.
these poles will imply infinite gain at the origin and at infinity.
at $\omega=0 \Rightarrow C_{2}=$ open circuit. The Op Amp will operate in open loop.
at $\omega=\infty \Rightarrow C_{1}=$ short circuit. The Op Amp gain will be infinity.
(c)
[Total Marks is 30]

$$
\begin{aligned}
& Z_{i}=\frac{\frac{1}{S C_{1}} R_{1}}{\frac{1}{S C_{1}}+R_{1}}=\frac{R_{1}}{S C_{1} R_{1}+1} \\
& \text { inverting Op Amp gain }=-\frac{Z_{F}}{Z_{i}} \\
& \therefore \frac{V_{o}}{V_{i}}=-\frac{R_{2}}{R_{1}} \frac{\left(S C_{1} R_{1}+1\right)}{\left(S R_{2} C_{2}+1\right)} R_{2} \\
& \frac{V_{1}}{S C_{2}}+R_{2} \\
& S C_{2} R_{2}+1 \\
& R_{i}
\end{aligned}
$$

(d)

$$
\begin{aligned}
K=23 & =20 \log \left(\frac{R_{2}}{R_{1}}\right) \Rightarrow \frac{R_{2}}{R_{1}}=10^{6.36 / 20}=2.08 \\
\text { zero at } 830 \mathrm{~Hz} & \Rightarrow \omega_{z}=\frac{1}{C_{1} R_{1}}=2 \pi \times 830=5212.4 \\
\text { assume } C_{1} & =50 n F \Rightarrow R_{1}=3.84 k \Omega \\
\therefore R_{2} & =2.08 R_{1}=7.98 k \approx 8 k \Omega \\
\text { pole at } 2 \mathrm{~K} & \Rightarrow \omega_{p}=\frac{1}{C_{2} R_{2}}=2 \pi \times 2 k=12560 \Rightarrow C_{2} \approx 10 n F
\end{aligned}
$$

(e)

2. Consider the magnitude plot in the next figure.
[15 marks] $\left[B_{a}, A_{d}, A_{q}\right]$
(a) Find the Sallen Key circuit that will realize the given specifications. Find the proper values of the circuit components.
(b) Calculate the error percentage of Q if the R_{F} increased 10%.
(c) Design Band pass Filter (1250 to 3500 Hz). Draw the circuit.

Solution: (a)

- From the figure $\mathrm{Q}=0.707 \Rightarrow$ gain $=3-\frac{1}{Q}=1.58$
- Assume $\mathrm{C}=0.01 \mathrm{uF} \Rightarrow R=\frac{1}{2 \pi \times 3500 \times 0.01 u}=4.5 \mathrm{k} \Omega$
- $R_{F}=0.58 R=0.58 \times 4.5=2.6 K \Omega$

(b)
- Error percentage in gain $k=1+\frac{1.1 R_{F}}{R}=1+1.1 \times 0.58=1.638 \Rightarrow \Delta K=\frac{1.638}{1.58}=1.036$
- $Q=\Delta K Q=1.036 * 0.707=0.733$
(c)
- For HPF: $\mathrm{Q}=0.707 \Rightarrow$ gain $=3-\frac{1}{Q}=1.58$
- Assume $\mathrm{C}=0.01 \mathrm{uF} \Rightarrow R=\frac{1}{2 \pi \times 1250 \times 0.01 u}=1.273 k \Omega$
- $R_{F}=0.58 R=0.58 \times 4.5=746 K \Omega$
- For the LPF: use the same values.

