Term: Sep - Jan 2015/16
Exam Time:60 min

ANSWER THE FOLLOWING QUESTIONS:

1. Design a filter having the phase asymptotic plot shown in the next Figure.
[10 marks] $\left[A_{a}, C_{p}\right]$
(a) Drive the transfer function.
(b) Find the circuit and give the schematic and element values.
(c) Redesign the circuit to raise its DC gain to be 2 .

Solution: From the Figure, there are vertex at $300 \mathrm{rad} / \mathrm{sec}, 5000 \mathrm{rad} / \mathrm{sec}, 30 \mathrm{k} \mathrm{rad} / \mathrm{sec}$, and $500 \mathrm{~K} \mathrm{rad} / \mathrm{sec}$
Q1.(a)

$$
\begin{aligned}
& \therefore \omega_{1}=3 \mathrm{Krad} / \mathrm{sec}, \text { and } \omega_{2}=50 \mathrm{Krad} / \mathrm{sec} \\
& \quad|T(S)|=\frac{1}{\left(\frac{s}{3 K}+1\right)\left(\frac{s}{500 K}+1\right)}
\end{aligned}
$$

(b) Since the gain is not specified.

$$
\begin{aligned}
\omega & =\frac{1}{R C} \Rightarrow R=\frac{1}{\omega C} \\
R_{1} & =\frac{1}{10 n \times 3 k}=33.3 k \Omega . \\
R_{2} & =\frac{1}{100 p \times 500 k}=20 K \Omega .
\end{aligned}
$$

Since the gain is not specified.

(c)

$$
\begin{aligned}
& K=1+\frac{R_{f}}{R_{i}} \\
& \therefore R_{f}=R_{i}
\end{aligned}
$$

[Total Marks is 30]
2. For $6^{\text {th }}$ order Butterworth.
(a) State the main features of Butterworth filter.
(b) Find the pole locations.

Solution: (a)

- The Butterworth filter is all pole filter.
- $|T(j 0)|=1$.
- $|T(j 1)|=0.707=\frac{1}{\sqrt{2}}$ for $\forall n$.
- The attenuation increases by $20 \mathrm{ndB} /$ decade.
(b)

$$
\psi=\frac{180}{6}=30^{\circ}
$$

$$
n=6
$$

$$
\pm 75^{\circ}
$$

3. Draw the wiring diagram of Tow-Thomas.
[15 marks] $\left[B_{a}, A_{d}, A_{q}\right]$
(a) Drive an expression for transfer function of bandpass Tow-Thomas.
(b) Draw bode plot for phase and magnitude of the bandpass Tow-Thomas.
(c) Find the Tow-Thomas circuit that will realize a bandpass filter with center frequency $f_{o}=$ 38 Hz and -3 dB passband should be located between 34.8 kHz and 41.1 kHz . Calculate quality factor, and Find the proper values of the circuit components. Midband gain must be $\mathrm{H}=2$

Solution:

(a)

$$
\begin{aligned}
& V_{B}=-\frac{Z_{F}}{R_{3}} V_{1}-\frac{Z_{F}}{R_{2}} V_{L} \\
& Z_{F}=\left(Z_{C_{1}} \| Z_{R_{1}}\right)=\frac{R_{1}}{1+S C_{1} R_{1}} \\
&\left(1+S C_{1} R_{1}\right) V_{B}=-\frac{R_{1}}{R_{3}} V_{1}-\frac{R_{1}}{R_{2}} V_{L} \\
& \because V_{L}=\frac{1}{S C_{2} R_{4}} V_{B} \\
&\left(1+S C_{1} R_{1}+\frac{R_{1}}{S C_{2} R_{2} R_{4}}\right) V_{B}=-\frac{R_{1}}{R_{3}} V_{1} \\
& \frac{V_{B}}{V_{1}}=\frac{-\frac{R_{1}}{R_{3}} S C_{2} R_{2} R_{4}}{S C_{2} R_{2} R_{4}+S^{2} C_{1} C_{2} R_{1} R_{2} R_{4}+R_{1}} \\
& \frac{V_{B}}{V_{1}}=\frac{\left(-\frac{R_{1}}{R_{3}}\right) S \frac{1}{C_{1} R_{1}}}{S^{2}+S \frac{1}{C_{1} R_{1}}+\frac{1}{C_{1} C_{2} R_{2} R_{4}}} \\
& \therefore \omega_{o}=\frac{1}{\sqrt{C_{1} C_{2} R_{2} R_{4}}} \text { and } Q=\frac{R_{1}}{\sqrt{R_{2} R_{4}}} \sqrt{\frac{C_{1}}{C_{2}}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
T_{B}(S) & =\frac{H\left(\omega_{o} / Q\right) S}{S^{2}+\left(\omega_{o} / Q\right) S+\omega_{o}^{2}} \\
\mid T_{B}(j \omega) & =\frac{H(\omega / Q)}{\sqrt{\left(1-\omega^{2}\right)^{2}+(\omega / Q)^{2}}} \\
\theta & =90^{\circ}-\tan ^{-1}\left(\frac{\omega / Q}{1-\omega^{2}}\right)
\end{aligned}
$$

(c)

$$
\beta=\frac{\omega_{o}}{Q} \Rightarrow Q=\frac{\omega_{o}}{\beta}=\frac{38}{41.1-34.8} \approx 6
$$

let $C_{1}=C_{2}=C=0.01 \mu F$
$\therefore \omega_{o}=\frac{1}{C \sqrt{R_{2} R_{4}}}, \quad H=-\frac{R_{1}}{R_{3}}$ and $Q=\frac{R_{1}}{\sqrt{R_{2} R_{4}}}$ let $R_{2}=R_{4}=R$

$$
\begin{aligned}
\therefore \omega_{o} & =\frac{1}{C R}, \quad H=-\frac{R_{1}}{R_{3}} \text { and } Q=\frac{R_{1}}{R} \\
\therefore R & =\frac{1}{\omega_{o} C}=419 \Omega \\
R_{1} & =Q R=2.51 k \Omega \\
R_{3} & =\frac{R_{1}}{H}=1.26 k \Omega
\end{aligned}
$$

