ANSWER THE FOLLOWING QUESTIONS:

1. A Second-order passive lowpass filter is designed with:
$R=120 \Omega, L=16 \mathrm{mH}$, and $C=0.05 \mu F$.
(a) Drive the transfer function.
(b) Calculate ω_{o} and Q.
(c) Redesign the circuit to raise its quality factor to 12 without changing ω_{o}. Draw the wiring diagram of the circuit.

Solution: Q1.(a)

$$
\begin{array}{rlr}
H(S) & =\frac{\frac{1}{S c}}{R+S L+\frac{1}{S c}} & \times S C \\
H(S) & =\frac{1}{S^{2} L C+S C R+1} & \div L C \\
& =\frac{\frac{1}{L C}}{S^{2}+S \frac{R}{L}+\frac{1}{L C}} & \\
& =\frac{\omega_{0}^{2}}{S^{2}+S \frac{\omega_{0}}{Q}+\omega_{0}^{2}} &
\end{array}
$$

$$
\text { Quality factor }=Q=\frac{\omega_{0}}{\beta} \quad \omega_{o}=\frac{1}{\sqrt{L C}} \quad \beta=\frac{R}{L}
$$

(b)

$$
\begin{aligned}
\omega_{o} & =\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{16 m \times 0.05 \mu}}=35.35 \mathrm{krad} / \mathrm{sec} \\
Q & =\frac{\omega_{0}}{\beta}=\frac{1}{\sqrt{L C}} \times \frac{L}{R}=\frac{1}{R} \sqrt{\frac{L}{C}}=4.71
\end{aligned}
$$

(c)
$\because \omega_{o}$ dependes on L, C
$\because \frac{\omega_{o}}{Q}=\frac{R}{L} \Rightarrow$ the only parameter i could change without affecting ω_{o} is R
$\therefore R=\frac{L \omega_{o}}{Q}=47.13 \Omega$
2. For $7^{\text {th }}$ order Butterworth. Find the pole locations.
[5 marks] $\left[B_{a}, A_{d}, A_{q}\right]$

3. Consider the Bode asymptotic plot in the next Figure.
[15 marks] $\left[B_{a}, A_{d}, A_{q}\right]$
(a) Determine $T(s)$ and plot the phase of $T(s)$.
(b) Drive an expression for transfer function of Sallen-key.
(c) Find the Sallen-key circuit that will realize the given specifications. Find the proper values of the circuit components.
(d) Calculate the error percentage of Q if the R_{F} increased 10%.

Solution:

From the bode plot:
Gain $=4 d B, \quad$ maximum flat $\Rightarrow Q=0.707, \quad w_{o}=2 \pi \times 3500=21.98 \mathrm{krad} / \mathrm{sec}$ (a)

$$
\begin{aligned}
k & =10^{\frac{4}{20}}=1.58 \\
T(S) & =\frac{1.58}{\left(\left(\frac{S}{21.98 k}\right)+1\right)}
\end{aligned}
$$

(b)

$V^{-}\left(1+\frac{R_{F}}{R}\right)=V^{-} K=V_{\text {out }} V_{x}$
$\frac{V_{\text {in }}-V_{x}}{Z_{1}}=\frac{V_{x}-V^{-}}{Z_{2}}+\frac{V_{x}-V_{\text {out }}}{Z_{3}}$
$\frac{V_{x}-V^{-}}{Z_{2}}=\frac{V^{-}}{Z_{4}}$
$\therefore V_{x}=V^{-}\left(\frac{Z_{2}}{Z_{4}}+1\right)$
$V_{\text {in }}-V_{x}=V_{x} \frac{Z_{1}}{Z_{2}}-V^{-} \frac{Z_{1}}{Z_{2}}+V_{x} \frac{Z_{1}}{Z_{3}}-V_{\text {out }} \frac{Z_{1}}{Z_{3}}$
$V_{\text {in }}=V_{x}\left(\frac{Z_{1}}{Z_{2}}+\frac{Z_{1}}{Z_{3}}+1\right)-V^{-} \frac{Z_{1}}{Z_{2}}-V_{\text {out }} \frac{Z_{1}}{Z_{3}}$
$V_{\text {in }}=\frac{V_{\text {out }}}{K}\left(\frac{Z_{2}}{Z_{4}}+1\right)\left(\frac{Z_{1}}{Z_{2}}+\frac{Z_{1}}{Z_{3}}+1\right)-\frac{V_{\text {out }}}{K} \frac{Z_{1}}{Z_{2}}-V_{\text {out }} \frac{Z_{1}}{Z_{3}}$
$\frac{V_{\text {in }}}{V_{\text {out }}}=\frac{1}{K}\left(\frac{Z_{1}}{Z_{4}}+\frac{Z_{1} Z_{2}}{Z_{4} Z_{3}}+\frac{Z_{2}}{Z_{4}}+\frac{Z \not\langle }{Z_{2}}+\frac{Z_{1}}{Z_{3}}+1-\frac{Z \not\langle }{Z_{2}}\right)-\frac{Z_{1}}{Z_{3}}$
$=\frac{Z_{1} Z_{3}+Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{1} Z_{4}+Z_{3} Z_{4}-K Z_{1} Z_{4}}{K Z_{3} Z_{4}}$
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{K Z_{3} Z_{4}}{Z_{1} Z_{3}+Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{1} Z_{4}+Z_{3} Z_{4}-K Z_{1} Z_{4}}$
(c)

For Low pass filter: Z_{3}, Z_{4} arecapacitors and Z_{1}, Z_{2} areresistors

$$
\begin{array}{rlr}
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{K \frac{1}{S C_{3}} \frac{1}{S C_{4}}}{R_{1} \frac{1}{S C_{3}}+R_{1} R_{2}+R_{2} \frac{1}{S C_{3}}+R_{1} \frac{1}{S C_{4}}+\frac{1}{S C_{3}} \frac{1}{S C_{4}}-K R_{1} \frac{1}{S C_{4}}} & \times S^{2} C_{4} C_{3} \\
& =\frac{K}{R_{1} S C_{4}+s^{2} C_{3} C_{4} R_{1} R_{2}+R_{2} S C_{4}+R_{1} S C_{3}+1-K R_{1} S C_{3}} & \div C_{3} C_{4} R_{1} R_{2} \\
& =\frac{K}{s^{2}+S \frac{R_{1} C_{4}+R_{2} C_{4}+R_{1} C_{1} R_{3}-K R_{1} C_{3}}{C_{3} C_{4} R_{1} R_{2}}+\frac{1}{C_{3} C_{4} R_{1} R_{2}}} & C_{3}=C_{4}=C \\
& T(S)=\frac{K}{s^{2}+S \frac{R_{2}+R_{1}(2-K)}{C R_{1} R_{2}}+\frac{1}{C^{2} R_{1} R_{2}}} &
\end{array}
$$

$$
\omega_{o}=\frac{1}{C \sqrt{R_{1} R_{2}}} \quad Q=\frac{\sqrt{R_{1} R_{2}}}{R_{2}+R_{1}(2-K)}
$$

it is obvious that Q depends on R_{1}, R_{2}, and k which is equal 1.58
$w_{o}=3500 \mathrm{rad} / \mathrm{sec}$ depends on R_{1}, R_{2}, and C.
So we will use R_{1}, R_{2} to control Q and C to tune the w_{o}.

$$
\begin{aligned}
Q & =\frac{\sqrt{R_{1} R_{2}}}{R_{2}+R_{1}(2-K)} \\
0.707 & =\frac{\sqrt{R_{1} R_{2}}}{R_{2}+0.42 R_{1}}
\end{aligned} \quad \text { let } R_{1}=10 \mathrm{k} \Omega
$$

To find C:

$$
C=\frac{1}{w_{o} \sqrt{R_{1} R_{2}}}
$$

by substituting $R_{1}=10 k \Omega$, $w_{o}=3500 \mathrm{rad} / \mathrm{sec}, R_{2}=9900 / 1818 \Omega$
$\therefore C=287 \mu F$ or $670 \mu F$
To find R_{i}, R_{F}

let $k=1.58, R_{i}=10 k \Omega$

(d)

$$
\begin{aligned}
R_{F} & =5800+580=6380 \Omega \\
K & =1+\frac{R_{F}}{R_{i}}=1.638 \\
Q & =\frac{\sqrt{R_{1} R_{2}}}{R_{2}+R_{1}(2-K)}
\end{aligned}
$$

- $@ R_{2}=9800 \Rightarrow Q=0.735 \Rightarrow$ error $=4 \%$
- $@ R_{2}=1818 \Rightarrow Q=0.784 \Rightarrow$ error $=10 \%$

