Introduction 0000 00	Passive Filters Characteristics	Bilinear Transfer Function 000 00000 0000 0000 000	Exercises

Introduction To Analog Filters

Dr. M. Shiple

Shaping Circuits (EEC 242), 2015

http://Drshiple-courses.weebly.com/

Introduction 0000 00	Passive Filters Characteristics	Bilinear Transfer Function 000 00000 00000 0000 0000	Exercises

Outline Introduction

Surrounding Applications Mathematical background

Passive Filters Characteristics

Four types of filters Realization with passive Elements

Bilinear Transfer Function

Low Pass Filter High Pass Filter Bandpass Filter Band rejection Filter (BRF) All Pass Filter

Exercises

 $\underset{\text{EEC 242}}{\text{Passive Filters}}$

Introduction • 000 • 0	Passive Filters Characteristics 000 000	Bilinear Transfer Function 000 00000 00000 0000 0000	Exercises
Surrounding Applications			

Cell phone

Introduction 000 00	Passive Filters Characteristics 000 000	Bilinear Transfer Function 000 0000 00000 0000 0000	Exercises
Surrounding Applications			

ADSL Splitter

Introduction ○○●○ ○○	Passive Filters Characteristics ooo ooo	Bilinear Transfer Function 000 00000 00000 0000 0000	Exercises
Surrounding Applications			

Heart Rate

http://Drshiple-courses.weebly.com/

Introduction
0000
00

Passive Filters Characteristics

Bilinear Transfer Function

Exercises

Surrounding Applications

Automotive Applications

Current Sense Amplifiers

Applications:

- · H-Bridge Motor Control
- · Solenoid Current Sense
- PWM Control Loops
- Hydraulic Controls
- · Lamp Monitoring
- · Glow Plug Control
- Load Monitoring
- · HEV/EV Battery Management Systems
- 12V / 24V Battery Monitoring
- · High Voltage Data Acquisition

Part Number	Current Direction	Common Mode Voltage (V)	Response Time (µs)	V _{OS} Max (µV)	PSRR Min (dB)	Max Temperature Range	Comments
LT1787	Bidirectional	2.5 to 65	10	150	100	-40°C to 125°C	Buffered Output; Simple Input Filtering
LT1999	Bidirectional	-5 to 80	2.5	750	80	-55°C to 150°C	High Speed AC Monitor
LT6100	Unidirectional	4.1 to 48	40	300	95	-40°C to 125°C	Buffered Output with 5 Gain Settings

Introduction	Passive Filters Characteristics	Bilinear Transfer Function	Exercises
0000 ●0	000 000	000 000 00000 0000 0000	

Mathematical background

Fourier Series

$$a_{o} = \frac{2}{T} \int_{a}^{a+T} f(t) dt$$
(1)

$$a_{n} = \frac{2}{T} \int_{a}^{a+T} f(t) \cos(kwt) dt, \qquad k \ge 1$$
(2)

$$a_{n} = \frac{2}{T} \int_{a}^{a+T} f(t) \sin(kwt) dt, \qquad k \ge 1$$
(3)

EEC 242

Introduction ○○○○ ○●	Passive Filters Characteristics 000 000	Bilinear Transfer Function 000 00000 00000 0000	Exercises
Mathematical backgro	und		

Hierarchy of Filters

Introduction 0000 00	Passive Filters Characteristics •oo •oo	Bilinear Transfer Function 000 00000 00000 0000	Exercises
Four types of filters			

Four types of filters

"Ideal Filters" Frequency domain

Introduction 0000 00	Passive Filters Characteristics ○●○ ○○○	Bilinear Transfer Function 000 00000 00000 0000 0000	Exercises
Four types of filters			

"Realistic Filters" Frequency domain

troduction 200 2	Passive Filters Characteristics	Bilinear Transfer Function 000 00000 00000 0000	Exercises

Four types of filters

Key Filter Parameters

Introduction 0000 00	Passive Filters Characteristics eoo	Bilinear Transfer Function	Exercises

Realization with passive Elements

General form

$$T(s) = \frac{N(s)}{D(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

$$T(s) = rac{N(s)}{D(s)} = rac{b_1 s + b_0}{a_1 s + a_0}$$
 First Order

Conditions

- ► *a_i* and *b_i* are real numbers.
- *a_i* could be positive, negative, and zero.
- *b_i* could be positive.

EEC 242

http://Drshiple-courses.weebly.com/

ntroduction 0000 00	Passive Filters Characteristics ○○○ ○●○	Bilinear Transfer Function 000 00000 00000 0000	Exercises

Realization with passive Elements

Introduction 0000 00	Passive Filters Characteristics ○○○ ○○●	Bilinear Transfer Function 000 0000 00000 0000	Exercises

Realization with passive Elements

Introduction 0000 00	Passive Filters Characteristics	Bilinear Transfer Function	Exercises
Low Pass Filter			

- Find the transfer function.
- compute magnitude, phase, pole, and zero , assume $R = 12k\Omega$ and C = 100nf.

Introduction 0000 00	Passive Filters Characteristics 000 000	Bilinear Transfer Function ○●○ ○○○ ○○○○ ○○○○ ○○○○ ○○○○ ○○○	Exercises
Low Pass Filter			

|T(S)|

Magnitude

Introduction 0000 00	Passive Filters Characteristics 000 000	Bilinear Transfer Function OC● OOO OOOO OOOO	Exercises
Low Pass Filter			

 $< heta(\omega)$

Phase

Introduction 0000 00	Passive Filters Characteristics	Bilinear Transfer Function ○○○ ●○○ ○○○○○ ○○○○ ○○○○	Exercises
High Pass Filter			

- Find the transfer function.
- compute magnitude, phase, pole, and zero , assume $R = 12k\Omega$ and C = 100nf.

Introduction 0000 00	Passive Filters Characteristics 000 000	Bilinear Transfer Function	Exercises
High Pass Filter			

|T(S)|

 $\alpha = 20 \log_{10} |T(S)|$ $f_c = \frac{1}{2\pi Rc}$ $= \frac{1}{2 \times 3.14 \times 12k \times 100n}$ = 132.6 Hz Magnitude

http://Drshiple-courses.weebly.com/

Introduction 0000 00	Passive Filters Characteristics 000 000	Bilinear Transfer Function ○○○ ○○○ ○○○○ ○○○○ ○○○○	Exercises
High Pass Filter			

Excr 1:

Design a 1st order HPF with next specifications:

►
$$|T(0)| = 0.3$$
.

►
$$|T(\infty)| = 1.$$

► there are a zero @ f_z = −159.

Introduction 0000 00	Passive Filters Characteristics	Bilinear Transfer Function ○○○ ●○○○○ ○○○○ ○○○○	Exercises
Bandpass Filter			

Example

- Find the transfer function.
- compute magnitude, phase.

The BPF cct.:

Introduction 0000 00	Passive Filters Characteristics 000 000	Bilinear Transfer Function ○○○ ○●○○○ ○○○○ ○○○○ ○○○	Exercises
Bandpass Filter			

cont.

The BPF cct.:

Introduction 0000 00	Passive Filters Characteristics 000 000	Bilinear Transfer Function ○○○ ○○●●○○ ○○○○ ○○○○	Exercises
Bandpass Filter			

Band Pass Filter

- Therefore at the resonant frequency the impedance seen by the source is purely resistive.
- This implies that at resonance the inductor/capacitor combination acts as a short circuit.
- The current flowing in the system is in phase with the source voltage.

Introduction 0000 00	Passive Filters Characteristics ooo ooo	Bilinear Transfer Function ○○○ ○○○● ○○○●○ ○○○ ○○○	Exercises
Bandpass Filter			

Max. and Min. Frequencies

Introduction 0000 00	Passive Filters Characteristics	Bilinear Transfer Function	Exercises
Bandpass Filter			

Max. and Min. Frequencies

Introduction 0000 00	Passive Filters Characteristics	Bilinear Transfer Function ○○○ ○○○○ ●○○○ ●○○○ ○○○	Exercises
Band rejection Filter (BRF)		

Example

- ► Find the transfer function.
- compute magnitude, phase.

The BRF cct.:

Introduction 0000 00	Passive Filters Characteristics 000 000	Bilinear Transfer Function ○○○ ○○○○○ ○●○○ ○○○	Exercises	
Band rejection Filter (BRF)				

cont.

Introduction 0000 00	Passive Filters Characteristics ooo ooo	Bilinear Transfer Function ○○○ ○○○○ ○○○○ ○○●○ ○○○	Exercises
Band rejection Filter (BRF)			

The BRF cct.:

Max. and Min. Frequencies

Introduction 0000 00	Passive Filters Characteristics	Bilinear Transfer Function ○○○ ○○○○ ○○○○ ○○○● ○○○●	Exercises
Band rejection Filter (BRF)	1		

Max. and Min. Frequencies

$$\omega_{1} = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^{2} + \frac{1}{LC}}$$
$$\omega_{2} = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^{2} + \frac{1}{LC}}$$
Band width $= \beta = \frac{R}{L}$ Quality factor $= Q = \frac{\omega_{0}}{\beta}$

Introduction 0000 00	Passive Filters Characteristics 000 000	Bilinear Transfer Function ○○○ ○○○○○ ●○○○ ●○○	Exercises
All Pass Filter			

- Find the transfer function.
- compute magnitude, phase.

Introduction 0000 00	Passive Filters Characteristics 000 000	Bilinear Transfer Function ○○○ ○○○○ ○○○○ ○●○	Exercises
All Pass Filter			

cont.

EEC 242

http://Drshiple-courses.weebly.com/

0000	Passive Filters Characteristics 000 000	Blinear Iranster Function ○○○ ○○○○ ○○○○ ○○○○ ○○○○	Exercises
AH D. 511			

Max. and Min. Frequencies

$$|T(j\omega)| = \frac{1}{2}$$

 $\theta = -2 \tan^{-1} \frac{\omega}{\omega_c}$ for all ω
for all ω
for all ω
for all ω
for all ω

-200.0

Example 3.1:

To find the zero of TF By using voltage divider: (Num = 0): $V_o = V_i \frac{\frac{1}{Sc}}{R + \frac{1}{Sc}}$ $\times SC \Big|_{\text{To find the magnitude of}}^{\text{zero}} = \infty$ $\frac{V_o}{V_i} = \frac{1}{1 + SRc} = \frac{1}{1 + j\omega Rc}$ TF: $|T(S)| = rac{1}{\sqrt{(1)^2+(\omega Rc)^2}} \ |T(S)| = rac{1}{\sqrt{1+(rac{\omega}{\omega_c})^2}}$ use ω_c To find the pole of TF (Dnum = 0): $|T(S)| = \frac{1}{\sqrt{(1)^2 + (\omega Rc)^2}} = \frac{1}{\sqrt{2}}$ To find the phase of TF: $\frac{http://Drshiple}{\theta(\omega)} = \tan^{33}(\frac{\omega}{\omega})$

Example 3.3:

By using voltage divider:

$$V_o = V_i \frac{R}{R + \frac{1}{Sc}} \times \frac{V_o}{V_i} = \frac{SRC}{1 + SRc} = \frac{j\omega Rc}{1 + j\omega Rc}$$

To find the pole of TF (Dnum = 0):

$$|T(S)| = \frac{1}{\sqrt{(1)^2 + (\omega Rc)^2}} = \frac{1}{\sqrt{2}}$$
$$\omega_c = \frac{1}{Rc}$$

To find the magnitude of TF: $SC \mid |T(S)| = \frac{(\omega Rc)^2}{\sqrt{(1)^2 + (\omega Rc)^2}}$ use ω_c $|T(S)| = \frac{\frac{\omega}{\omega_c}}{\sqrt{1 + (\frac{\omega}{\omega_c})^2}}$ To find the phase of TF: $\theta(\omega) = \frac{\pi}{2} - \tan^{-1}(\frac{\omega Rc}{1})$ $= \frac{\pi}{2} - \tan^{-1}(\frac{\omega}{\omega_c})$

http://Drshiple-courses.weebly.com/

Example 3.4:

To realize
$$|T(0)| = 0.3$$
:

a pure capacitor will not meet this condition we need to add shunt resistor, the exapectid cct.:

 $V_o = V_i \frac{ScR_1R_2 + R_2}{ScR_1R_2 + (R_1 + R_2)}$ (4) $|T(S)|_{\omega=0}=rac{R_1}{R_1+R_2}$ (5) To find the pole of TF (Dnum = 0): $ScR_1R_2 + R_2 = 0 \Rightarrow \omega = \frac{1}{cR_1}$ (6)From 4 and 6 assume $c = 1 \mu f$ \therefore $R_1 = 1K\Omega$ and $R_2 = 429\Omega$