Examiner : Dr. Mustafa M. Shiple
Subject: Shaping Circuits /(EEC 242)
Score: 40 Marks

Term: Feb / May 2015
Exam Time:90 min

ANSWER THE FOLLOWING QUESTIONS:

1. Draw an asymptotic of bode plot for both magnitude and phase for the [5 marks] $\left[A_{q}, A_{u}, B_{k}\right]$ following $T(S)$.

$$
T(s)=1000 \frac{s^{2}}{(1+s)(1+0.025 s)}
$$

Solution: Q1.

- $1000 \Rightarrow 20 \log 1000=60 \mathrm{~dB}$ and $\phi=0$.
- $S^{2} \Rightarrow$ slop $=+40$ crosses 0 dB at 1 rad and $\phi=180$.
- $(1+S) \Rightarrow$ slop $=-20$ starts at 1 rad and $\left.\phi\right|_{0.1}=0,\left.\phi\right|_{10}=-90$.
- $\left(1+\frac{1}{40} S\right) \Rightarrow$ slop $=-20$ starts at 40 rad and $\left.\phi\right|_{4}=0,\left.\phi\right|_{400}=-90$.
- Total.

2. Draw the wiring diagram of generalized impedance converter (GIC).
[10 marks] $\left[B_{a}, A_{d}, A_{q}\right]$
(a) Drive an expression for transfer function of GIC.
(b) Design a passive maximum flat high pass filter characterized by: $\alpha_{\min }=40 d B, \alpha_{\max }=$ $1 d B, \omega_{\text {stop }}=100 \mathrm{krad} / \mathrm{s}$, and $\omega_{\text {pass }}=625 \mathrm{krad} / \mathrm{s}$. Use GIC in your design, The available resistors are 50Ω.

Order	R_{S}	C_{1} a_{1}	L_{2} a_{2}	C_{3} a_{3}	L_{4} a_{4}	C_{5} a_{5}	L_{6} a_{6}	C_{7} a_{7}
1	1.0	2.0000						
2	1.0	1.4142	1.4142					
3	1.0	1.0000	2.0000	1.0000				
4	1.0	0.7654	1.8478	1.8478	0.7654			
5	1.0	0.6180	1.6180	2.0000	1.6180	0.6180		

[Total Marks is 40]

Solution:

(a)

For ideal Op-Amp:

$$
\begin{align*}
V_{o} & =A\left(V^{+}-V^{-}\right) \\
V^{-} & =V^{+} \\
I_{2} & =I_{3} \Rightarrow \frac{v_{2}-v_{1}}{z_{2}}=\frac{v_{1}-v_{3}}{z_{3}} \Rightarrow v_{2}=\left(1+\frac{z_{2}}{z_{3}}\right) v_{1}-\frac{z_{2}}{z_{3}} v_{3} \\
I_{4} & =I_{5} \Rightarrow \frac{v_{3}-v_{1}}{z_{4}}=\frac{v_{1}}{z_{5}} \Rightarrow v_{3}=\left(1+\frac{z_{4}}{z_{5}}\right) v_{1} \tag{1}
\end{align*}
$$

By substituting (2) in (1):

$$
\begin{array}{rlr}
v_{2} & =\left(1+\frac{z_{2}}{z_{3}}\right) v_{1}-\frac{z_{2}}{z_{3}}\left(1+\frac{z_{4}}{z_{5}}\right) v_{1} & \\
v_{1}-v_{2} & =\frac{z_{2} z_{4}}{z_{3} z_{5}} v_{1} & \because z_{i n}=\frac{v_{1}}{I_{1}} \\
\frac{v_{1}-v_{2}}{z_{1}} & =\frac{z_{2} z_{4}}{z_{1} z_{3} z_{5}} v_{1}=I_{1} & \\
\therefore & z_{i n}=\frac{z_{1} z_{3} z_{5}}{z_{2} z_{4}}=\frac{\text { odd }}{\text { even }} &
\end{array}
$$

Select z_{4} or $z_{2}=\frac{1}{S c}$ and rest of $\mathrm{z}=\mathrm{R} \therefore z_{\text {in }}=S \frac{R_{1} R_{3} R_{5} C_{4}}{R_{2}}$
For sake of normalization:
$R_{1}=R_{2}=R_{3}=1 \Omega$ and $C_{4}=1 F \Rightarrow z_{i n}=S R_{5}=S L \Rightarrow L=R_{5}$
(b)

1. $n=\frac{\log \left(\frac{\left(0^{\frac{\alpha_{\text {min }}}{\text { man }}}-1\right)}{\left(10^{\frac{\alpha_{\text {max }}}{10}}-1\right)}\right)}{2 \log \frac{\omega_{S}}{\omega_{P}}}=\frac{\log \left(\frac{\left(10^{\frac{40}{10}}-1\right)}{\left(10^{\frac{1}{10}}-1\right)}\right)}{2 \log \frac{6.25}{1}}=2.88 \approx 3$
2. $\omega_{B L P}=\frac{\omega_{P}}{\left(10^{\frac{\alpha_{\text {max }}}{10}}-1\right)^{\frac{1}{2 n}}}=\frac{1}{\left(10^{\frac{1}{10}}-1\right)^{\frac{1}{6}}}=1.25$
3. $\omega_{B H P}=\frac{625 K}{\omega_{B L P}}=\frac{625 K}{1.25}=500 \mathrm{~K}$

LPF	RS	C1	L2	C3
$\mathrm{n}=3$	1	1	2	1

4. NPF	RS	L 1	C 2	L 3
$\mathrm{n}=3$	1	1	0.5	1
$K m=50$	$k_{f}=\omega_{B H P}=500 k$			
HPF	50	0.1 mH	$0.2 \mu F$	0.1 mH

5. @ N-HPF $L=R_{5}=1 \Omega \Rightarrow$ @ HPF $L=R_{5}=50 \Omega$

6. Design an active band-rejection filter with maximum flat response to meet attenuation specification given in next Figure.(Hint:The available capacitor is $10 n F$).
[10 marks] $\left[C_{o}, A_{m}\right]$
(a) Adjust band-rejection gain to be 5 .
(b) Find pole locations, $\omega_{P L}, \omega_{P H}$, and ω_{o}.

Solution:

(a) Low pass Filter

$$
\begin{aligned}
n & =\frac{\log \left(\frac{\left(10^{\frac{\alpha_{\min }^{10}}{10}}-1\right)}{\left(10^{\frac{\alpha_{m a x}}{10}}-1\right)}\right)}{2 \log \frac{\omega_{S}}{\omega_{P}}}=\frac{\log \left(\frac{\left(10 \frac{25}{10}-1\right)}{\left(10^{\frac{0.3}{10}}-1\right)}\right)}{2 \log \frac{500}{50}}=1.822 \approx 2 \\
\omega_{o} & =\sqrt{500 * 1000}=707.11 \mathrm{rad} / \mathrm{s} \\
\psi & =\frac{180}{2}=90^{\circ} \\
\epsilon & =\sqrt{\left(10^{\frac{\alpha_{m a x}}{10}}-1\right)}=0.2 \\
\omega_{B L P} & =\epsilon^{-\frac{1}{n}} \times \omega_{P}=96.69 \mathrm{rad} / \mathrm{s} \\
\text { assume } C & =10 \mathrm{n} F \Rightarrow R=\frac{1}{C \omega_{B L P}} \approx 1 \mathrm{~K} \Omega
\end{aligned}
$$

Gain and quality factor: $S^{2}+\frac{\omega_{0}}{Q} S+\omega_{0}^{2}$ and $k=3-\frac{1}{Q}$

$\#$	Degree	Location	$\frac{1}{Q}$	Q	$K=3-\frac{1}{Q}$	$R_{F}=(K-1) R$
pole 1,2	45	$-0.71 \pm j 0.71$	1.41	0.71	1.59	605Ω

(b) High pass Filter

$$
\begin{aligned}
\omega_{B H P} & =\frac{\omega_{o}^{2}}{\omega_{B L P}}=5171.2 \mathrm{rad} / \mathrm{s}=k_{f} \\
k_{m} & =\frac{1}{K_{F} C}=\frac{1}{5171.2 * 10 n}=19.3 \mathrm{~K} \Omega \\
R_{F} & =22.2 \mathrm{~K} \Omega
\end{aligned}
$$

(c) To adjust overall gain $=\frac{5}{1.15}=4.38 \Rightarrow R_{2}=4.38 R_{1}=4.338 \mathrm{~K} \Omega$

4. Max Wien is German physicist who invented Wien-bridge oscillator.
[10 marks] $\left[C_{o}, A_{m}\right]$
(a) Derive expressions for oscillation conditions of Wien-bridge oscillator.
(b) Design the Wien-bridge oscillator with $f_{o}=30 \mathrm{kHz}$. The available resistor is $10 \mathrm{k} \Omega$.

Solution:

(a)

$$
\begin{aligned}
& \frac{v_{I}}{v_{o}}=\frac{Z_{p}}{Z_{p}+Z_{s}} \\
& V_{o}=\left(1+\frac{R_{2}}{R_{1}}\right) v_{y} \\
& \frac{v_{o}}{v_{I}}=\left(1+\frac{R_{2}}{R_{1}}\right) \frac{Z_{p}}{Z_{p}+Z_{s}} \\
& Z_{p}=\frac{R}{1+S c R} \\
& Z_{s}=\frac{1+S c R}{S c} \\
& T(S)=\left(1+\frac{R_{2}}{R_{1}}\right) \frac{1}{3+S R c+\frac{1}{S R c}}
\end{aligned}
$$

Apply Barkhuasen conditions:
unity gain $A \beta=1$

$$
|T(j \omega)|=A \beta=T(S)=\left(1+\frac{R_{2}}{R_{1}}\right) \frac{1+j 0}{3+S R c+\frac{1}{S R c}}=1
$$

\therefore real $=$ real $\& ~ i m g=i m g$
$\therefore S R c+\frac{1}{S R c}=0 \Rightarrow \omega_{o}=\frac{1}{R c}$
$\left(\frac{R_{2}}{R}\right)\left(\frac{1}{3}\right)=1 \quad$ let $R_{1}=R$
$R_{2}=2 R$
in Phase $\angle A \beta=0$
by using ω_{o}

$$
\begin{aligned}
\angle T(j \omega) & =\angle A \beta=\angle\left(1+\frac{R_{2}}{R_{1}}\right) \frac{1+j 0}{3+S R c+\frac{1}{S R c}} \\
& =\tan ^{-1}\left(\frac{0}{\frac{R_{2}}{R_{1}}}\right)-\tan ^{-1}\left(\frac{0}{3}\right)=0
\end{aligned}
$$

(b)

$$
\begin{aligned}
f_{o} & =\frac{1}{2 \pi R c} \Rightarrow c=\frac{1}{2 \pi \times 10 k \times 30 k}=530 p F \\
R_{2} & =2 R=10 k 2=20 k \Omega
\end{aligned}
$$

5. Briefly, discuss the function of phase detector. Compare between its types. [5 marks] $\left[C_{o}, A_{m}\right.$]

Solution: Phase Detector: This circuit produces an output voltage proportional to the phase difference between two input signals.

$\#$	Type	θ_{e}	k_{d}
1	analog multiplier	$-\frac{\pi}{2}<\theta_{e}<\frac{\pi}{2}$	$\frac{k_{1} k_{2}}{2}$
2	XOR Phase Detector	$-\frac{\pi}{2}<\theta_{e}<\frac{\pi}{2}$	$\frac{U_{B}}{U_{B}}$
3	JK-FF Phase Detector	$-\pi<\theta_{e}<\pi$	$\frac{U_{B}}{2 \pi}$
4	PFD Phase Frequency Detector	$-2 \pi<\theta_{e}<2 \pi$	$\frac{U_{B}}{4 \pi}$

