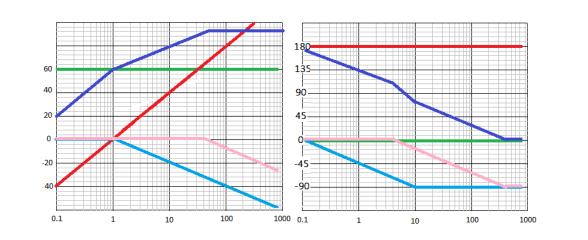
Term: Feb / May 2015 Exam Time:90 min

 $[5 \text{ marks}] [A_q, A_u, B_k]$

ANSWER THE FOLLOWING QUESTIONS:

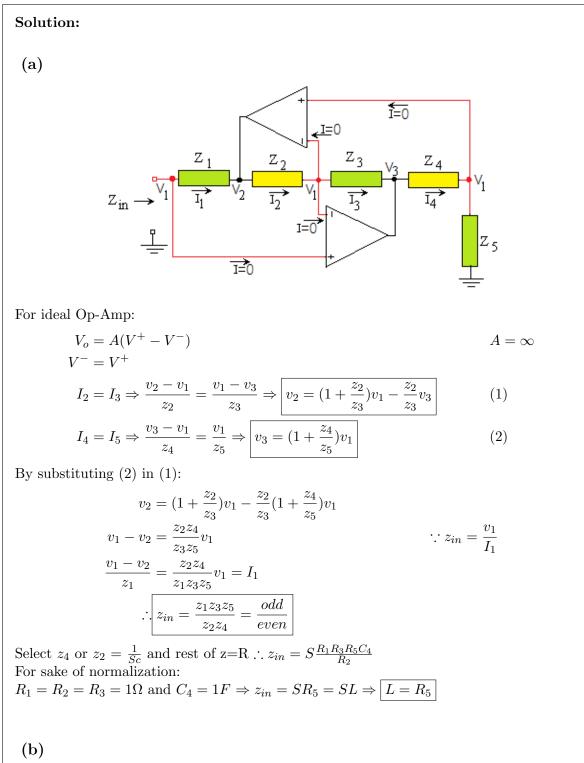

1. Draw an asymptotic of bode plot for both magnitude and phase for the following T(S).

$$T(s) = 1000 \frac{s^2}{(1+s)(1+0.025s)}$$

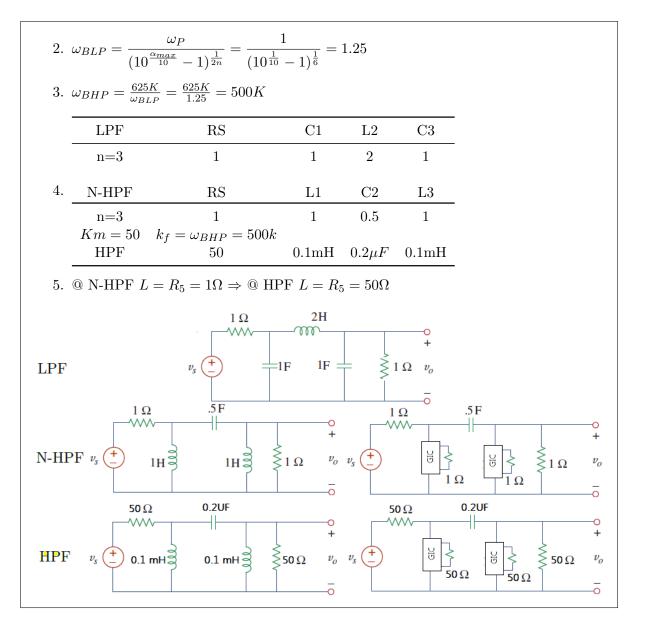
Solution: Q1.

- $1000 \Rightarrow 20 \log 1000=60 \text{ dB} \text{ and } \phi = 0.$
- $S^2 \Rightarrow \text{slop} = +40 \text{ crosses } 0 \text{ dB at } 1 \text{ rad and } \phi = 180.$
- $(1+S) \Rightarrow \text{slop} = -20 \text{ starts at } 1 \text{ rad and } \phi|_{0,1} = 0, \phi|_{10} = -90.$
- $(1 + \frac{1}{40}S) \Rightarrow \text{slop} = -20 \text{ starts at } 40 \text{ rad and } \phi|_4 = 0, \phi|_{400} = -90.$

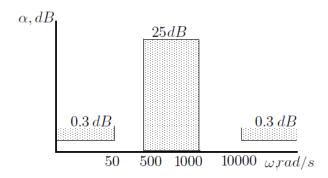
- 2. Draw the wiring diagram of generalized impedance converter (GIC).
- [10 marks] $[B_a, A_d, A_q]$


- (a) Drive an expression for transfer function of GIC.
- (b) Design a passive maximum flat high pass filter characterized by: $\alpha_{min} = 40dB$, $\alpha_{max} = 1dB$, $\omega_{stop} = 100krad/s$, and $\omega_{pass} = 625krad/s$. Use GIC in your design, The available resistors are 50Ω .

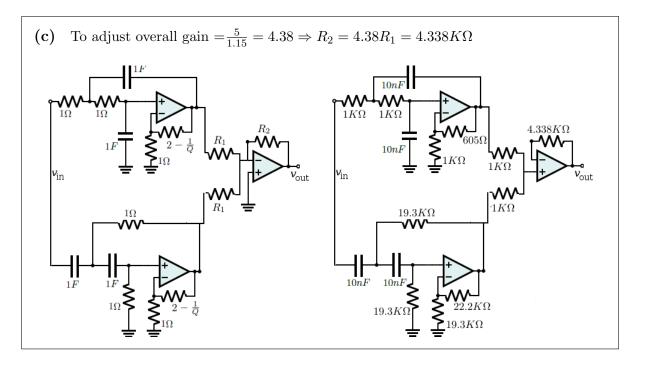
Order	R_S	C_1	L_2	C_3	L_4	C_5	L_6	C_7
		a_1	a_2	a_3	a_4	a_5	a_6	a_7
1	1.0	2.0000						
2	1.0	1.4142	1.4142					
3	1.0	1.0000	2.0000	1.0000				
4	1.0	0.7654	1.8478	1.8478	0.7654			
5	1.0	0.6180	1.6180	2.0000	1.6180	0.6180		


Signature of Examiner:

Good Luck Head of Dept.: [Total Marks is 40]


page 1 of 7	
-------------	--

$$1. \ n = \frac{\log\left(\frac{(10^{\frac{\alpha_{min}}{10}} - 1)}{(10^{\frac{\alpha_{max}}{10}} - 1)}\right)}{2\log\frac{\omega_S}{\omega_P}} = \frac{\log\left(\frac{(10^{\frac{40}{10}} - 1)}{(10^{\frac{1}{10}} - 1)}\right)}{2\log\frac{6.25}{1}} = 2.88 \approx 3$$



- 3. Design an active band-rejection filter with maximum flat response to meet attenuation specification given in next Figure.(Hint:The available capacitor is 10nF). [10 marks] [C_o, A_m]
 - (a) Adjust band-rejection gain to be 5.
 - (b) Find pole locations, ω_{PL} , ω_{PH} , and ω_o .

Solution:

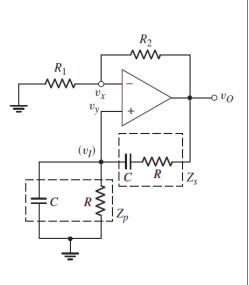
(a) Low pass Filter								
$n = \frac{\log\left(\frac{(10^{\frac{\alpha_{min}}{10}} - 1)}{(10^{\frac{\alpha_{max}}{10}} - 1)}\right)}{2\log\frac{\omega_S}{\omega_P}} = \frac{\log\left(\frac{(10^{\frac{25}{10}} - 1)}{(10^{\frac{0.3}{10}} - 1)}\right)}{2\log\frac{500}{50}} = 1.822 \approx 2$								
$\omega_o = \sqrt{500 * 1000} = 707.11 rad/s$								
$\psi = \frac{180}{2} = 90^{\circ}$								
$\epsilon = \sqrt{(10^{\frac{\alpha_{max}}{10}} - 1)} = 0.2$								
	$\omega_{BLP} = \epsilon^{-rac{1}{n}} imes \omega_P = 96.69 rad/s$							
	assum	the $C = 10nF \Rightarrow$	R = -	1	$\approx 1K\Omega$			
			C	ω_{BLP}				
~ · · · ·	14. 0		ŋ		o 1			
Gain and o	quality fac	etor: $S^2 + \frac{\omega_0}{Q}S$ -	$+\omega_0^2$ and	k =	$3-\frac{1}{Q}$			
#	Degree	Location	$\frac{1}{Q}$	\mathbf{Q}	$K = 3 - \frac{1}{Q}$	$R_F = (K-1)R$		
			4 4 4	0 =1		0070		
pole $1,2$	45	$-0.71\pm j0.71$	1.41	0.71	1.59	605Ω		
pole 1,2	45	$-0.71 \pm j0.71$	1.41	0.71	1.59	605\2		
	45 n pass Filt		1.41	0.71	1.59	605\2		
		er				605\2		
		er $\omega_{BHP} = rac{\omega_{BHP}}{\omega_{HP}}$	$\frac{u_o^2}{BLP} = k$	5171.2	$rad/s = k_f$			
		er $\omega_{BHP} = rac{\omega_{BHP}}{\omega_{HP}}$	$\frac{u_o^2}{BLP} = k$	5171.2				

- 4. Max Wien is German physicist who invented Wien-bridge oscillator.
- [10 marks] $\left[C_o,A_m\right]$
- (a) Derive expressions for oscillation conditions of Wien-bridge oscillator.
- (b) Design the Wien-bridge oscillator with $f_o = 30 kHz$. The available resistor is $10 k\Omega$.

Solution:

(a)

$$\frac{v_I}{v_o} = \frac{Z_p}{Z_p + Z_s}$$


$$V_o = (1 + \frac{R_2}{R_1})v_y$$

$$\frac{v_o}{v_I} = (1 + \frac{R_2}{R_1})\frac{Z_p}{Z_p + Z_s}$$

$$Z_p = \frac{R}{1 + ScR}$$

$$Z_s = \frac{1 + ScR}{Sc}$$

$$T(S) = (1 + \frac{R_2}{R_1})\frac{1}{3 + SRc + \frac{1}{SRc}}$$

R

Apply Barkhuasen conditions: unity gain $A\beta = 1$

$$|T(j\omega)| = A\beta = T(S) = (1 + \frac{R_2}{R_1}) \frac{1+j0}{3+SRc + \frac{1}{SRc}} = 1$$

$$\therefore \text{ real=real \& img=img}$$

$$\therefore SRc + \frac{1}{SRc} = 0 \Rightarrow \omega_o = \frac{1}{Rc}$$

$$(\frac{R_2}{R})(\frac{1}{3}) = 1$$

$$R_2 = 2R$$

$$|T(j\omega)| = A\beta = T(S) = 1$$

$$|T(j\omega)| = 1$$

 $\frac{\text{in Phase } \angle A\beta = 0}{\text{by using } \omega_o}$

$$\begin{split} \angle T(j\omega) &= \angle A\beta = \angle (1 + \frac{R_2}{R_1}) \frac{1 + j0}{3 + SRc + \frac{1}{SRc}} \\ &= tan^{-1}(\frac{0}{\frac{R_2}{R_1}}) - tan^{-1}(\frac{0}{3}) = 0 \end{split}$$

(b) $f_o = \frac{1}{2\pi Rc} \Rightarrow c = \frac{1}{2\pi \times 10k \times 30k} = 530pF$ $R_2 = 2R = 10k2 = 20k\Omega$ 5. Briefly, discuss the function of phase detector. Compare between its types.

[5 marks] $[C_o, A_m]$

Solution: <u>Phase Detector:</u> This circuit produces an output voltage proportional to the phase difference between two input signals.

#	Type	$ heta_e$	k_d
3	analog multiplier XOR Phase Detector JK-FF Phase Detector PFD Phase Frequency Detector	$\begin{array}{c} -\frac{\pi}{2} < \theta_e < \frac{\pi}{2} \\ -\frac{\pi}{2} < \theta_e < \frac{\pi}{2} \\ -\pi < \theta_e < \pi \\ -2\pi < \theta_e < 2\pi \end{array}$	$\frac{\frac{k_1k_2}{2}}{\frac{U_B}{\frac{\pi}{2\pi}}}$

-6500+030+6500+030+6500+039-