ANSWER THE FOLLOWING QUESTIONS:

1. Design a Butterworth low-pass filter to realize the following specifications: [15 marks] $\left[C_{o}, A_{m}\right]$

$$
\alpha_{\max }=0.5 d B, \alpha_{\min }=35 d B, \omega_{p}=1000 \mathrm{rad} / \mathrm{s}, \text { and } \omega_{p}=3000 \mathrm{rad} / \mathrm{s} .
$$

(a) Calculate the filter order, pole locations in the S-plane, and transfer function.
(b) Calculate denormalized frequency, gain and quality factor for each pole.
(c) By keeping the gain of the third pole to unity, Calculate all filter components.
(d) Redesign LPF to use resistors with $8.1 \mathrm{k} \Omega$.
(e) Redesign $5^{\text {th }}$ order LPF (designed in part c)with $\omega_{B}=12343.4 \mathrm{rad} / \mathrm{s}$.

Solution:

(a)

$$
n=\frac{\log \left(\frac{\left(10^{\frac{\alpha_{\text {min }}}{}}-1\right)}{\left(10^{\frac{\alpha_{\text {max }}}{10}}-1\right)}\right)}{2 \log \frac{\omega_{S}}{\omega_{P}}}=\frac{\log \left(\frac{\left(10 \frac{35}{10}-1\right)}{\left(10^{\frac{0.5}{10}}-1\right)}\right)}{2 \log \frac{3000}{1000}}=4.625 \approx 5
$$

pole locations: $\psi=\frac{180}{n}=36^{\circ}$

- $0 \Rightarrow(S+1) \Rightarrow P_{0}=-1$
- $\pm 36 \Rightarrow\left(S^{2}+2 \cos 36 S+1\right)=\left(S^{2}+0.618 S+1\right)$
$\Rightarrow P_{1,2}=-\cos \psi+ \pm j \sin \psi=-0.3 \pm J 0.95$
- $\pm 72 \Rightarrow\left(S^{2}+2 \cos 72 S+1\right)=\left(S^{2}+1.618 S+1\right) \Rightarrow P_{3,4}=-0.8 \pm J 0.58$
(b)

$$
\begin{aligned}
\epsilon & =\sqrt{\left(10^{\frac{\alpha_{\text {max }}}{10}}-1\right)}=0.349 \\
\omega_{B L P F} & =\epsilon^{-\frac{1}{n}} \times \omega_{P}=1234.34 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Gain and quality factor: $S^{2}+\frac{\omega_{0}}{Q} S+\omega_{0}^{2}$ and $k=3-\frac{1}{Q}$

Pole	Term	\mathbf{Q}	\mathbf{K}
0	$S+1$	0.5	1
1,2	$S^{2}+1.618 S+1$	0.618	1.382
3,4	$S^{2}+0.618 S+1$	1.618	2.382

(c) Assume $C=10 n F$

$$
\begin{array}{rlr}
R & =\frac{1}{\omega_{B} C}=\frac{1}{1234.34 \times 10 n}=81 k \Omega \\
K_{1,2} & =1+\frac{R_{A}}{R_{B}} \Rightarrow R_{B}=\frac{R_{A}}{K_{1,2}-1}=\frac{81 \mathrm{~K}}{0.382}=212 k \Omega & \text { Assume } R=R_{A} \\
K_{3,4} & =1+\frac{R_{A}}{R_{B}} \Rightarrow R_{B}=\frac{R_{A}}{K_{1,2}-1}=\frac{81 K}{1.382}=58.6 k \Omega & \text { Assume } R=R_{A}
\end{array}
$$

Reduce the third gain to be unity $=1$

$$
\begin{aligned}
a_{3,4} & =\frac{1}{2.382}=0.419 \\
R_{1} & =\frac{R}{a}=\frac{81 k}{2.382}=193.1 k \Omega \\
R_{2} & =\frac{R}{1-a}=\frac{81 k}{2.382}=139.4 k \Omega
\end{aligned}
$$

(d)

$$
\begin{aligned}
\Delta K_{m} & =\frac{n e w_{v} \text { alue }}{\text { old } d_{v} \text { alue }}=\frac{8.1 k}{81 k}=0.1 \\
\forall R_{\text {new }} & =0.1 R_{\text {old }} \\
\forall C_{\text {new }} & =\frac{C_{\text {old }}}{\Delta k_{m}}=\frac{10 \mathrm{nF}}{0.1}=100 \mathrm{nF}
\end{aligned}
$$

(e)

$$
\begin{aligned}
\Delta K_{f} & =\frac{n e w_{v} \text { alue }}{\text { old } d_{v} \text { alue }}=\frac{12343.4}{1234.34}=10 \\
\forall R_{\text {new }} & =\text { not changed } \\
\forall C_{\text {new }} & =\frac{C_{\text {old }}}{\Delta k_{f}}=\frac{10 n F}{10}=1 n F
\end{aligned}
$$

2. Design a Butterworth High-pass filter to realize the following specifications: [15 marks] $\left[C_{o}, A_{m}\right]$

$$
\alpha_{\max }=1 d B, \alpha_{\min }=50 d B, \omega_{p}=5300 \mathrm{rad} / \mathrm{s}, \text { and } \omega_{p}=1000 \mathrm{rad} / \mathrm{s}
$$

(a) Calculate the filter order, pole locations in the S-plane,and transfer function.
(b) Calculate denormalized frequency, gain and quality factor for each pole.

Solution:

(a) transform $\mathrm{HPF} \Rightarrow$ LPF By replace $\forall \omega_{L P F}=\frac{\omega_{H P F_{p} a s s}}{\omega_{H P F}}$

pole locations: $\psi=\frac{180}{n}=45^{\circ}$

- $\pm 22.5 \Rightarrow\left(S^{2}+2 \cos 22.5 S+1\right)=\left(S^{2}+1.847 S+1\right)$
$\Rightarrow P_{1,2}=-\cos \psi \pm j \sin \psi=-0.923 \pm J 0.383$
- $\pm 67.5 \Rightarrow\left(S^{2}+2 \cos 72 S+1\right)=\left(S^{2}+.765 S+1\right) \Rightarrow P_{3,4}=-0.383 \pm J 0.926$
(b)

$$
\begin{aligned}
\epsilon & =\sqrt{\left(10^{\frac{\alpha_{\max }}{10}}-1\right)}=0.509 \\
\omega_{B L P F} & =\epsilon^{-\frac{1}{n}} \times \omega_{P}=1.18 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Gain and quality factor: $S^{2}+\frac{\omega_{0}}{Q} S+\omega_{0}^{2}$ and $k=3-\frac{1}{Q}$

Pole	Term	\mathbf{Q}	\mathbf{K}
1,2	$S^{2}+1.847+1$	0.54	1.15
3,4	$S^{2}+0.765+1$	1.31	2.23

Assume $C=1 F$

$$
\begin{array}{rlr}
R & =\frac{1}{\omega_{B L P F} C}=\frac{1}{1.18 \times 1}=0.85 \Omega & \\
K_{1,2} & =1+\frac{R_{A}}{R_{B}} \Rightarrow R_{B}=\frac{R_{A}}{K_{1,2}-1}=\frac{0.85}{0.15}=5.67 \Omega & \text { Assume } R=R_{A} \\
K_{3,4} & =1+\frac{R_{A}}{R_{B}} \Rightarrow R_{B}=\frac{R_{A}}{K_{1,2}-1}=\frac{0.85}{1.23}=0.691 \Omega & \text { Assume } R=R_{A}
\end{array}
$$

Transform LPF \Rightarrow HPF :
(1)RC to CR transformation:
$C_{\text {new }}=\frac{1}{R}=1.18 F \quad R_{\text {new }}=\frac{1}{C}=1 \Omega$

(2)De-normalization:
$\omega_{H L P F}=\frac{\omega_{H P F_{p} a s s}}{\omega_{L P F}}=\frac{5300}{1.18}=4491.53 \mathrm{rad} / \mathrm{s}$
Assume $C=10 n F$

$$
\begin{aligned}
k_{m} & =\frac{C_{\text {old }}}{c_{\text {new }} k_{f}}=\frac{1.18}{10 n \times 4491.53}=26.3 \mathrm{~K} \Omega \\
R & =1 \times 26.3 k=26.3 \mathrm{~K} \Omega \\
R_{A} & =0.85 \times 26.3 k=22.3 \mathrm{~K} \Omega \\
R_{B 1} & =5.67 \times 26.3 \mathrm{k}=149 \mathrm{~K} \Omega \\
R_{B 2} & =6.91 \times 26.3 \mathrm{k}=181.7 \mathrm{~K} \Omega
\end{aligned}
$$

