8085 Interrupts

Dr. M. Shiple

Microprocessor Architecture, 2019

Introduction to interrupts

Definitions

- At home how do you know when someone wants to talk to you on the telephone?
 - A. Periodically pick up the phone and see if someone?s there This
 is known as polling.
 - B. Wait for the phone to ring and then answer it, This is interrupt-driven

Interrupt

is a process where an external device can get the attention of the microprocessor.

- The process starts from the I/O device
- The process is asynchronous.

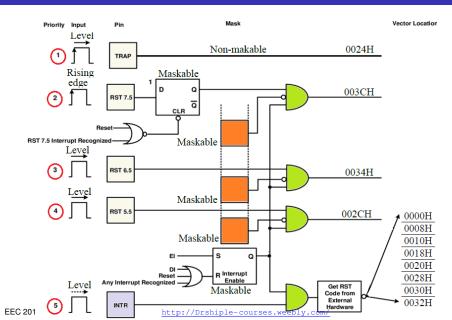
Neglecting ..

- Interrupts can sometimes be ignored (or masked)
 - Good for when the CPU is doing something more important
 - When the interrupt mask is set, interrupts are hidden (masked) and ignored
- Non-maskable interrupts cannot be ignored(NMI's take precedence)
- Interrupts may be prioritized

Servicing Interrupts and Exceptions

- When an exception occurs
 - CPU saves current state
 - PC, Flag Register
 - Global interrupts disabled
 - CPU saves current state
 - PC, Flag Register
 - Global interrupts disabled
 - Jump to interrupt service routine (ISR)
 - Execute routine
 - RETI return from interrupt
 - Restore state
 - Flag Register (re-enables global interrupts)
 - Return to user program (restore PC)

Interrupt Vector Table (IVT)

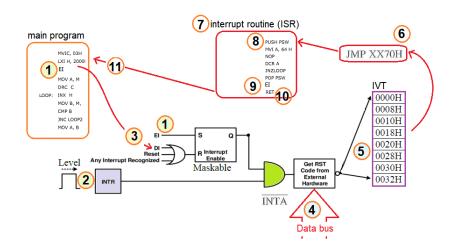

Hardware interrupts of 8085

5	Interrupt	Interrupt vector address	Maskable or non- maskable	Edge or level triggered	priority
2	TRAP	0024H	Non-makable	Level	1
5	RST 7.5	003CH	Maskable	Rising edge	2
3	RST 6.5	0034H	Maskable	Level	3
٤	RST 5.5	002CH	Maskable	Level	4
	INTR	Decided by hardware	Maskable	Level	5

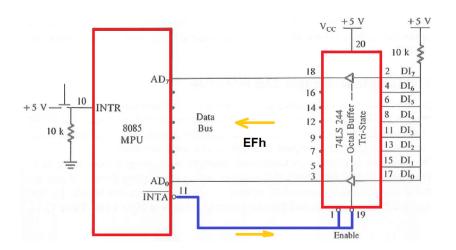
non-vectored

\					
Instruction	Machine hex code	Interrupt Vector Address			
RST 0	C7	0000H			
RST 1	CF	0008H			
RST 2	D7	0010H			
RST 3	DF	0018H			
RST 4	E7	0020H			
RST 5	EF	0028H			
RST 6	F7	0030H			
RST 7	FF	0032H			
http://Drshiple-courses.weebly.com/					

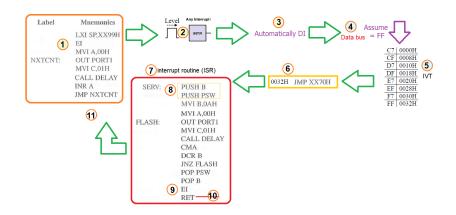
Interrupt summary



Interrupt assembly instructions


Instructions				
Mnemonics	Arguments	Operation	Flag	Description
SIM		mask=A		Set Interrupt Mask
RIM		A=mask		Read Interrupt Mas
DI				Disable Interrupts
El				Enable Interrupts

RST	Z	-[SP]=PC,PC=z	 Restart (3X7)


Interrupt life cycle

Interrupt life cycle

Interrupt life cycle

Classification of Interrupts

- Hardware (called Interrupts or Resets)
 - Reset
 - User-defined interrupt
 - Timer operations
 - CPU operations monitor failure
- Software
 - Reset
 - User-defined interrupt
 - Timer operations
 - CPU operations monitor failure