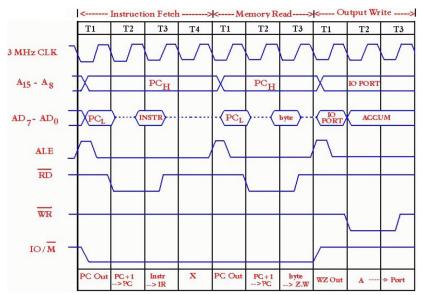
Interfacing IO Devices

Dr. M. Shiple

Microprocessor Architecture, 2019

Instruction cycles of IO

Out instruction


OUT instruction:- data output from accumulator to device e.g printer, display

Syntax

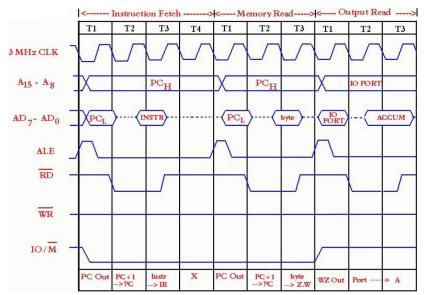
Out p ;[p]= A Note the address of port 8 bits (max. 256 ports only)

Note: Add(high) = Add(Low) = p at output write cycle

Out instruction

Out instruction

In instruction

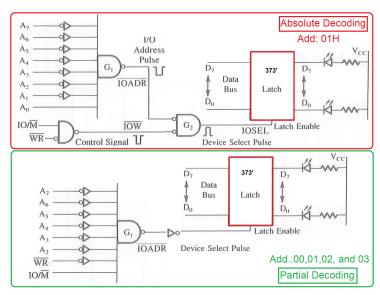

IN instruction:- data input into the accumulator from device eg. Keyboard

Syntax

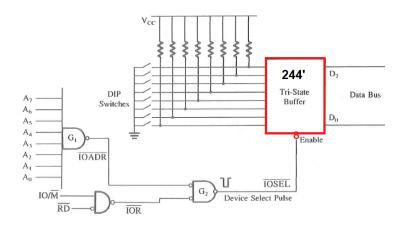
In p ;A=[p] Note the address of port 8bits (max. 256 ports only)

Note: Add(high) = Add(Low) = p at output read cycle

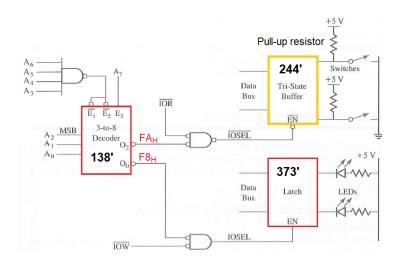
In instruction



IO interface


I/O Port Identification and Addressing

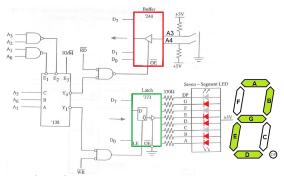
- Memory Mapped I/O:
 - Access and identify as memory registers using memory space.
 - 2 Memory related control signal0
 - 8085 treats I/O ports as if it was communicating with a memory location.
 - 16-bit address i.e. from 0000H to FFFFH
- Peripheral Mapped I/O
 - Separate address scheme (8-bit i.e from 00H to FFH)
 - 2 Enabled and identified by I/O related control signals


Peripheral Mapped I/O decoding circuit (Output)

Peripheral Mapped I/O decoding circuit (Input)

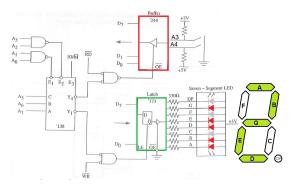
Peripheral Mapped I/O decoding circuit (In/Out)

Memory-mapped I/O Vs. Peripheral I/O

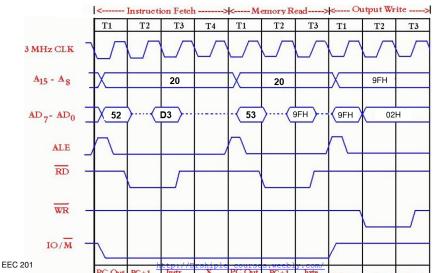

Memory	Machine	Mnemonics	Comments
Address	Code		
2050	32	STA 8000H	; Store Contents of
2050	0		accumulator in memory
2050	80		location 8000H

- STA (Store A Direct) is used to store the content of accumulator to the specified memory register.
- 4 Here the memory address is 8000H (16-bit)
- If we connect an output device with this address (8000H), the accumulator contents will transfer to the output device.
- Try arithmetic and logical operations √.
- Compare between STA 8000H and Out 80H (from point of view memory & speed)

Memory-mapped I/O Vs. Peripheral I/O


Characteristics	Memory-mapped I/O	Peripheral I/O
Control signals for Input/Output	MEMR/MEMW	TOR/TOW
3.Instructions available	STA; LDA; ADD M; SUB M; ANA M: etc	IN and OUT
4.Data transfer	any register ⇔ I/O	Only I/O ⇔ the
4.Data transier	devices	Accumulator
5.Maximum	64K is shared between	256 input devices
number of I/Os	I/Os and system	and 256 output
possible	memory	devices
6.Execution speed	13 T-states (STA,LDA) 7 T-sates (MOV M,R)	10 T-states
7.Hardware	More hardware for	Less hardware for
requirements	decode 16-bit	decode 8-bit
8.Other features	Arithmetic or logical directly performed	Not available

Specify the addresses of ports of next circuit and determine the port type (Memory-mapped I/O / Peripheral I/O) and mode (In/Out)?


Peripheral I/O: (In add=3FH or 2FH) (Out add=9FH or 8FH)

Write assembly code to display 2 on 7-segment display? assume code start at 2050 H? Draw instruction cycle of Out instruction?

2050	MVI	A,02H
2052	Out	9FH
2054	Hlt	

Write assembly code to display 2 on 7-segment display? assume code start at 2050 H

Write assembly code to read switches from input port and continue read until on of them is closed. Once a switch is closed, turn on the corresponding led (A or B)? assume code start at 2050 H

