Term: Fall 2023
Exam Time:60 min

ANSWER THE FOLLOWING QUESTIONS:

1. Fill in the spaces
(a) True or False: Proprioception refers to the perception of internal states of a robot.
(b) True or False: Encoders can be used for sensing joint position and speed.
(c) True or False: MEMS capacitive technology Accelerometer has great advantages; PCB mounting and high accuracy.
(d) True or False: Gyroscope is a device used to measure the orientation of objects based on its spinning speed.
(e) True or False: Brushless DC motor is used when high torque is needed.

Solution:

(a) true.
(b) true.
(c) false.
(d) false.
(e) false.
2. Choose only one answer for each question
[5 marks] $\left[\mathrm{A}_{q}, \mathrm{C}_{a}\right]$
(a) Joints with surface contact is called \qquad
A. higher pair .
B. lower pair .
C. surface pair.
D. point pair.
(b) Helical joint is \qquad
A. One degree of freedom .
B. Two degree of freedom .
C. According to its movement dependencies,its considered as three DOF.
D. its a false joint with 0 DOF.
(c) SCARA Robot arm is .
A. $R-\mathrm{R}-\mathrm{P}$.
B. $\mathrm{R}-\mathrm{P}-\mathrm{P}$
C. $\mathrm{R}-\mathrm{P}-\mathrm{P}$.
D. $\mathrm{R}-\mathrm{P}-\mathrm{R}$.

(d) Number of DOF of shown arm robot $=\ldots \ldots$......
A. 1 .
B. 2 .
C. 3 .
D. 4 .

(e) The shown transformation represents rotation around=.......
A. x -axis.
B. y-axis.
C. z -axis.

$$
{ }^{0} T_{1}=\left[\begin{array}{cccc}
\cos \left(q_{1}\right) & -\sin \left(q_{1}\right) & 0 & 0 \\
\sin \left(q_{1}\right) & \cos \left(q_{1}\right) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

D. moving frame o-axis.

Solution:

(a) lower pair (B).
(b) One degree of freedom(A)
(c) $\mathrm{R}-\mathrm{R}-\mathrm{P}(\mathrm{A})$.
(d) $4(\mathrm{D})$.
(e) z-axis (C).
3. A frame ${ }^{U} F$ (n-, o-, a-axes) was moved along its own n -axis a distance of 5 units, then rotated about its o-axis an angle of 60°, followed by a rotation of 60° about the z -axis, then translated about its a-axis for 3 units, and finally rotated 45° about the x -axis.
(a) Calculate the total transformation performed.
(b) Calculate the total inverse transformation to reallocate the frame to the original position.
[10 marks] $\left[\mathrm{D}_{c}\right]$

```
Solution: \(U_{T_{B}}=\operatorname{Rot}(x, 45) \operatorname{Rot}(z, 60) \operatorname{Trans}(5,0,0) \operatorname{Rot}(o, 60) \operatorname{Trans}(0,0,3)\)
\(U_{T_{B}}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos (45) & -\sin (45) & 0 \\ 0 & \sin (45) & \cos (45) & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \times\left[\begin{array}{cccc}\cos (45) & -\sin (45) & 0 & 0 \\ \sin (45) & \cos (45) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \times\left[\begin{array}{llll}0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\)
\(\times\left[\begin{array}{cccc}\cos (45) & 0 & \sin (45) & 0 \\ 0 & 0 & 1 & 0 \\ -\sin (45) & 0 & \cos (45) & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \times\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1\end{array}\right]\)
    Answer Q3
    \(\operatorname{Rot}(x, 45) \operatorname{Rot}(z, 60)=\)
        \(\left[\begin{array}{llll}0.5 & -0.866 & 0 . & 0 .\end{array}\right]\)
        \(\left[\begin{array}{llll}0.612 & 0.354 & -0.707 & 0 .\end{array}\right]\)
        \(\left[\begin{array}{llll}0.612 & 0.354 & 0.707 & 0\end{array}\right.\)
        \(\left[\begin{array}{llll}0 . & 0 . & 0 . & 1 .\end{array}\right]\)
    \(\operatorname{Rot}(x, 45) \operatorname{Rot}(z, 60) \operatorname{trans}(5,0,0)=\)
        \(\left[\begin{array}{llll}{[0.5} & -0.866 & 0 . & 2.5\end{array}\right]\)
        \(\left[\begin{array}{llll}0.612 & 0.354 & -0.707 & 3.062\end{array}\right]\)
        [ 0.612
0.354
0.707
3.062]
\(\left[\begin{array}{llll}0 . & 0 . & 0 . & 1 .\end{array}\right]\)
```

$\operatorname{Rot}(x, 45) \operatorname{Rot}(z, 60) \operatorname{trans}(5,0,0)$ rot_y $(60)=$
$\left[\begin{array}{lllll}0.25 & -0.866 & 0.433 & 2.5\end{array}\right]$
$\left[\begin{array}{llll}0.919 & 0.354 & 0.177 & 3.062\end{array}\right]$
$\left[\begin{array}{llll}-0.306 & 0.354 & 0.884 & 3.062\end{array}\right]$
$\left[\begin{array}{llll}0 . & 0 . & 0 . & 1 .\end{array}\right]$
$\operatorname{Rot}(x, 45) \operatorname{Rot}(z, 60) \operatorname{trans}(5,0,0) \operatorname{rot} y(60) \operatorname{trans}(0,0,3)=$ $\left[\begin{array}{llll}{[0.25} & -0.866 & 0.433 & 3.799\end{array}\right]$
$\left[\begin{array}{llll}0.919 & 0.354 & 0.177 & 3.592\end{array}\right]$
[-0.306
0.354
0.884
5.714]
$\left[\begin{array}{llll}0 . & 0 . & 0 . & 1 .\end{array}\right]$
$U_{T_{B}}=\left[\begin{array}{cccc}0.25 & -0.866 & 0.433 & 3.8 \\ 0.918 & 0.354 & 0.177 & 0.359 \\ -0.306 & 0.354 & 0.884 & 5.71 \\ 0 & 0 & 0 & 1\end{array}\right]$

