The challenges of online presentations

Path and trajectory planning relates to the way a robot is moved from one location to another in a controlled manner

- Path : A is defined as the collection of a sequence of locations (configurations a robot makes) to go from one place to another without regard to the timing of these configurations.
- Trajectory is the collection of the locations (configurations) with respect to time.

Joint-Space vs. Cartesian-Space Descriptions

- The description of the motion to be made by the robot with its joint values is called the joint-space description.
- Inverse kinematics, is not used to transfer end effector from point A to B.
- Increasing intermediate points between A and B , increasing path definitions.
- When robot course is impossible and yields an unsatisfactory solution, this is called singularities.

*osfacles

Trajectory Planning (undefined)

Trajectory Planning (pre-defined)

\checkmark Define predefined path.

- Violate predefined velocity $10^{\circ} / \mathrm{sec}$.
- α angle +/-
- β changes irregularly vs same time (irregular speed (discrete))

Joint-Space Trajectory

A motor should be able to provide the accelerations ${ }^{1}$ and velocities ${ }^{2}$ needed to control joint movements.

1. Third-Order Polynomial Trajectory Planning.
2. Fifth-Order Polynomial Trajectory Planning.
3. Linear Segments with Parabolic Blends.

Third-Order Polynomial Trajectory Planning

$\theta(t)$ Joint angle varied by time initial analge
$\theta\left(t_{0}\right)=\theta_{0}$ initial angle
$\theta\left(t_{f}\right)=\theta_{f}$ final angle
$\dot{\theta}\left(t_{0}\right)=0$ initial velocity
$\dot{\theta}\left(t_{f}\right)=0$ final velocity

$$
\theta(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}
$$

Third-Order Polynomial Trajectory Planning

$$
\theta(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}
$$

$$
\dot{\theta}(t)=c_{1}+2 c_{2} t+3 c_{3} t^{2}
$$

$$
\left.\theta(t)\right|_{t=0}=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}=c_{0}=\theta_{0}
$$

$$
\left.\dot{\theta}(t)\right|_{t=0}=c_{1}+2 c_{2} t+3 c_{3} t^{2}=c_{1}=0
$$

$\theta\left(t_{0}\right)=\theta_{0}$ initial angle
$\theta\left(t_{f}\right)=\theta_{f}$ final angle
$\dot{\theta}\left(t_{0}\right)=0$ initial velocity
$\dot{\theta}\left(t_{f}\right)=0$ final velocity

Third-Order Polynomial Trajectory Planning (example)

We intend to have the first joint of a 6 -axis robot go from an initial angle of 30° to a final angle of 750 in 5 seconds. Using a third-order polynomial, calculate the joint angle at 1,2,3, and 4 seconds.

Third-Order Polynomial Trajectory Planning (example)

We intend to have the first joint of a 6 -axis robot go from an initial angle of 30° to a final angle of 750 in 5 seconds. Using a third-order polynomial, calculate the joint angle at 1,2,3, and 4 seconds.

$$
\theta(t)=30+5.4 t^{2}-0.72 t^{3}
$$

$$
\dot{\theta}(t)=10.8 t-2.16 t^{2}
$$

$\theta(1)=34.68^{\circ}, \theta(2)=45.84^{\circ}, \theta(3)=59.16^{\circ}, \theta(4)=70.32^{\circ}$

$$
\ddot{\theta}(t)=10.8-4.32 t
$$

Third-Order Polynomial Trajectory Planning (example)

continue to the next point, where the joint is to reach 1050 in another 3 seconds. Draw the position, velocity, and acceleration curves for the motion.

$$
\theta(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}
$$

$$
\begin{gathered}
\left.\theta(t)\right|_{t=0}=c_{0}=75^{\circ} \\
\left.\theta(t)\right|_{t=3}=(75)+3 c_{1}+9 c_{2}+27 c_{3}=105^{\circ}
\end{gathered}
$$

$$
\Rightarrow 3 c_{2}+9 c_{3}=10
$$

$$
\dot{\theta}(t)=c_{1}+2 c_{2} t+3 c_{3} t^{2}
$$

$$
\theta(t)=75+10 t^{2}-2.22 t^{3}
$$

$$
\begin{aligned}
& \left.\dot{\theta}(t)\right|_{t=0}=c_{1}=0 \\
& \left.\dot{\theta}(t)\right|_{t=3}=(0)+6 c_{2}+27 c_{3}=0
\end{aligned}
$$

$$
\dot{\theta}(t)=20 t-6.66 t^{2}
$$

$$
\Rightarrow 6 c_{2}+27 c_{3}=0
$$

Third-Order Polynomial Trajectory Planning (example)

$$
\theta(t)=75+10 t^{2}-2.22 t^{3}
$$

$\dot{\theta}(t)=20 t-6.66 t^{2}$

$$
\ddot{\theta}(t)=20-13.33 t
$$

Instantaneous change in acceleration (jerk).

Vibration-Minimizing Motion Retargeting for Robotic Characters

Shayan Hoshyari Hongyi Xu Espen Knoop
Stelian Coros Moritz Bächer

<this video has audio>

Fifth-Order Polynomial Trajectory Planning

$$
\begin{aligned}
& \theta(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5} \\
& \dot{\theta}(t)=c_{1}+2 c_{2} t+3 c_{3} t^{2}+4 c_{4} t^{3}+5 c_{5} t^{4} \\
& \ddot{\theta}(t)=2 c_{2}+6 c_{3} t+12 c_{4} t^{2}+20 c_{5} t^{3}
\end{aligned}
$$

Fifth-Order Polynomial Trajectory Planning (example)

We intend to have the first joint of a 6 -axis robot go from an initial angle of 30° to a final angle of 750 in 5 seconds. Using a third-order polynomial, calculate the joint angle at $1,2,3$, and 4 seconds.

$$
\begin{aligned}
& \theta(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5} \\
& \dot{\theta}(t)=c_{1}+2 c_{2} t+3 c_{3} t^{2}+4 c_{4} t^{3}+5 c_{5} t^{4} \\
& \ddot{\theta}(t)=2 c_{2}+6 c_{3} t+12 c_{4} t^{2}+20 c_{5} t^{3}
\end{aligned}
$$

$\theta(0)=30$ o , $\dot{\theta}(0)=0 \% / \mathrm{sec}, \ddot{\theta}(0)=+5 \cong / \mathrm{sec}^{2}$
At time $=0 \mathrm{sec}$

$$
\begin{gathered}
\theta(0)=c_{0}=30 \\
\dot{\theta}(0)=c_{1}=0 \\
\ddot{\theta}(0)=2 c_{2}=+5=>c_{2}=2.5
\end{gathered}
$$

$$
\theta(5)=75 \varrho, \dot{\theta}(5)=0 \varrho / \mathrm{sec}, \ddot{\theta}(5)=-5 \varrho / \mathrm{sec}^{2}
$$

$$
\theta(5)=62.5+125 c_{3}+625 c_{4}+3125 c_{5}=75
$$

$$
\dot{\theta}(t)=25 c_{2}+75 c_{3} t^{2}+500 c_{4}+3125 c_{5}=0
$$

$$
\ddot{\theta}(t)=5+30 c_{3}+300 c_{4}+2500 c_{5}=-5
$$

Fifth-Order Polynomial Trajectory Planning (example)

We intend to have the first joint of a 6 -axis robot go from an initial angle of 30° to a final angle of 750 in 5 seconds. Using a third-order polynomial, calculate the joint angle at $1,2,3$, and 4 seconds.

$$
\left\{\begin{array}{c}
c_{0}=30 \\
c_{1}=0 \\
c_{2}=2.5 \\
c_{3}=1.6 \\
c_{4}=-0.58 \\
c_{5}=0.0464
\end{array}\right.
$$

Velocity is varied per time

Linear Segments with Parabolic Blends

Linear Segments with Parabolic Blends

$$
\theta(t)=c_{0}+c_{1} t+0.5 c_{2} t^{2}
$$

$$
\dot{\theta}(t)=c_{1}+c_{2} t
$$

At soft beginning:-

$\theta(0)=c_{0}=\theta_{i}$
$\dot{\theta}(0)=c_{1}=0$
$\ddot{\theta}(0)=c_{2}=\ddot{\theta}$

$$
\theta(t)=\theta_{i}+0.5 c_{2} t^{2}
$$

$$
\dot{\theta}(t)=c_{2} t
$$

$$
\ddot{\theta}(t)=c_{2}
$$

Linear Segments with Parabolic Blends

example

Joint 1 of the 6 -axis robot is to go from an initial angle of 30° to the final angle of 70° in 5 seconds with a cruising velocity of $\omega 1=10 / \mathrm{sec}$. Find the necessary time for blending, and plot the joint positions, velocities, and accelerations.

$$
t_{b}=\frac{\theta_{i}-\theta_{f}+\omega t_{f}}{\omega}=\frac{30-70+10 \times 5}{10}=1 \mathrm{sec}
$$

$$
\theta(t)=\theta_{i}+0.5 c_{2} t^{2}=30+5 t^{2}
$$

$\dot{\theta}(t)=c_{2} t=10 \mathrm{t}$
$\ddot{\theta}(t)=c_{2}=10$

Joint 1 of the 6 -axis robot is to go from an initial angle of 30° to the final angle of 70° in 5 seconds with a cruising velocity of $\omega 1=10 / \mathrm{sec}$. Find the necessary time for blending, and plot the joint positions, velocities, and accelerations.

$$
t_{b}=\frac{\theta_{i}-\theta_{f}+\omega t_{f}}{\omega}=\frac{30-70+10 \times 5}{10}=1 \mathrm{sec}
$$

Joint 1 of the 6 -axis robot is to go from an initial angle of 30° to the final angle of 70° in 5 seconds with a cruising velocity of $\omega 1=10 / \mathrm{sec}$. Find the necessary time for blending, and plot the joint positions, velocities, and accelerations.

$$
\begin{gathered}
t_{b}=\frac{\theta_{i}-\theta_{f}+\omega t_{f}}{\omega}=\frac{30-70+10 \times 5}{10}=1 \mathrm{sec} \\
\rightarrow\left\{\begin{array} { l }
{ \theta (t) = \theta _ { f } - \frac { \omega } { 2 t _ { b } } (t _ { f } - t) ^ { 2 } } \\
{ \ddot { \theta } (t) = \frac { \omega } { t _ { b } } (t _ { f } - t) } \\
{ \ddot { \theta } (t) = - \frac { \omega } { t _ { b } } }
\end{array} \left\{\begin{array}{l}
\theta=70-5(5-t)^{2} \\
\theta=10(5-t) \\
\theta=-10
\end{array}\right.\right.
\end{gathered}
$$

