

By Mustafa Shiple

Inverse of Transfornnation

In lnverse of Transfornnation

$$
\begin{aligned}
{ }^{U} T_{E}={ }^{U} T_{R}{ }^{R} T_{H}{ }^{H} T_{E} & ={ }^{U} T_{P}{ }^{P} T_{E} \\
{\left[{ }^{U} T_{R}\right]^{-1}\left[{ }^{U} T_{R}{ }^{R} T_{H}{ }^{H} T_{E}\right]\left[{ }^{H} T_{E}\right]^{-1} } & =\left[{ }^{U} T_{R}\right]^{-1}\left[{ }^{U} T_{P}{ }^{P} T_{E}\right]\left[{ }^{H} T_{E}\right]^{-1} \\
{ }^{R} T_{H} & ={ }^{U} T_{R}{ }^{-1 U} T_{P}{ }^{P} T_{E}{ }^{H} T_{E}{ }^{-1} \\
& ={ }^{R} T_{U}{ }^{U} T_{P}{ }^{P} T_{E}{ }^{E} T_{H}
\end{aligned}
$$

Inverse matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\underset{\text { determinant }}{\frac{1}{a d-b c}}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Pythagorean Trigonometric

Orthogonal matrices

$$
\begin{aligned}
& {\left[\begin{array}{l}
X_{2} \\
Y_{2}
\end{array}\right]=\left[\begin{array}{cc}
\cos (\alpha) & -\sin (\alpha) \\
\sin (\alpha) & \cos (\alpha)
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
Y_{1}
\end{array}\right]} \\
& {\left[\begin{array}{l}
X_{2} \\
Y_{2}
\end{array}\right]\left[\begin{array}{cc}
\cos (\alpha) & -\sin (\alpha) \\
\sin (\alpha) & \cos (\alpha)
\end{array}\right]^{-1}=\left[\begin{array}{l}
X_{1} \\
Y_{1}
\end{array}\right]}
\end{aligned}
$$

$$
\therefore\left[\begin{array}{cc}
\cos (\alpha) & -\sin (\alpha) \\
\sin (\alpha) & \cos (\alpha)
\end{array}\right]^{-1}=\frac{1}{c^{2}(\alpha)+s^{2}(\alpha)}\left[\begin{array}{cc}
\cos (\alpha) & \sin (\alpha) \\
-\sin (\alpha) & \cos (\alpha)
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
\cos (\alpha) & \sin (\alpha) \\
-\sin (\alpha) & \cos (\alpha)
\end{array}\right]=G_{R_{L}}{ }^{T}
$$

$$
G_{R_{L}}{ }^{-1}=G_{R_{L}}{ }^{T} \text { Orthogonal matrix }
$$

Quick Math Review (Dot Product)

$$
=\left[\begin{array}{cc}
\cos (\alpha) & \sin (\alpha) \\
-\sin (\alpha) & \cos (\alpha)
\end{array}\right]=G_{R_{L}}{ }^{T}
$$

Local : $\left[\begin{array}{l}X_{1} \\ Y_{1} \\ Z_{1}\end{array}\right]=\left[\begin{array}{ccc}\cos (\alpha) & \sin (\alpha) & 0 \\ -\sin (\alpha) & \cos (\alpha) & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}X_{2} \\ Y_{2} \\ Z_{2}\end{array}\right] \uparrow$

Summary

$$
\begin{array}{ll}
\text { Global : } & {\left[\begin{array}{l}
X_{2} \\
Y_{2} \\
Z_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\gamma) & -\sin (\gamma) \\
0 & \sin (\gamma) & \cos (\gamma)
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
Y_{1} \\
Z_{1}
\end{array}\right]} \\
\text { Local : } & {\left[\begin{array}{l}
X_{1} \\
Y_{1} \\
Z_{1}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\gamma) & \sin (\gamma) \\
0 & -\sin (\gamma) & \cos (\gamma)
\end{array}\right]\left[\begin{array}{l}
X_{2} \\
Y_{2} \\
Z_{2}
\end{array}\right]}
\end{array}
$$

$$
\text { Global : }\left[\begin{array}{c}
X_{2} \\
Y_{2} \\
Z_{2}
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\beta) & 0 & \sin (\beta) \\
0 & 1 & 0 \\
-\sin (\beta) & 0 & \cos (\beta)
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
Y_{1} \\
Z_{1}
\end{array}\right] \quad \text { Global : }\left[\begin{array}{l}
X_{2} \\
Y_{2} \\
Z_{2}
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\alpha) & -\sin (\alpha) & 0 \\
\sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
Y_{1} \\
Z_{1}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
X_{1} \\
Y_{1} \\
Z_{1}
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\beta) & 0 & -\sin (\beta) \\
0 & 1 & 0 \\
\sin (\beta) & 0 & \cos (\beta)
\end{array}\right]\left[\begin{array}{l}
X_{2} \\
Y_{2} \\
Z_{2}
\end{array}\right] \quad \text { Local : }\left[\begin{array}{l}
X_{1} \\
Y_{1} \\
Z_{1}
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\alpha) & \sin (\alpha) & 0 \\
-\sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X_{2} \\
Y_{2} \\
Z_{2}
\end{array}\right]
$$

Properties of a Rotation Matrix

- Example 1

Do the following matrices represent rotation matrices?

$$
\text { a) } R_{1}=\left[\begin{array}{ccc}
-\frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \\
0 & 1 & 0 \\
-\frac{\sqrt{3}}{2} & 0 & -\frac{1}{2}
\end{array}\right]
$$

b)

$$
R_{2}=\left[\begin{array}{ccc}
-\frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \\
0 & 1 & 0 \\
\frac{\sqrt{3}}{2} & 0 & -\frac{1}{2}
\end{array}\right]
$$

Solution
a) $\quad \operatorname{det} R_{1}=\frac{1}{2} \quad \Rightarrow$ It is not a rotation matrix
b) $\quad \operatorname{det} R_{2}=1$
$\left.R_{2} R_{2}^{T}=I\right\} \Rightarrow$ It is a rotation matrix

4×4 matrix

$$
T=\left[\begin{array}{cccc}
n_{x} & o_{x} & a_{x} & p_{x} \\
n_{y} & o_{y} & a_{y} & p_{y} \\
n_{z} & o_{z} & a_{z} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad T^{-1}=\left[\begin{array}{cccc}
n_{x} & n_{y} & n_{z} & -\mathbf{p} \cdot \mathbf{n} \\
o_{x} & o_{y} & o_{z} & -\mathbf{p} \cdot \mathbf{o} \\
a_{x} & a_{y} & a_{z} & -\mathbf{p} \cdot \mathbf{a} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Emanple:
$T=\left[\begin{array}{cccc}0.5 & 0 & 0.866 & 3 \\ 0.866 & 0 & -0.5 & 2 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 1\end{array}\right]$
$T^{-1}=\left[\begin{array}{cccc}0.5 & 0.866 & 0 & -(3 \times 0.5+2 \times 0.866+5 \times 0) \\ 0 & 0 & 1 & -(3 \times 0+2 \times 0+5 \times 1) \\ 0.866 & -0.5 & 0 & -(3 \times 0.866+2 \times-0.5+5 \times 0) \\ 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{cccc}0.5 & 0.866 & 0 & -3.23 \\ 0 & 0 & 1 & -5 \\ 0.866 & -0.5 & 0 & -1.598 \\ 0 & 0 & 0 & 1\end{array}\right]$

solution

$$
\begin{aligned}
& { }^{R} T_{5} \times{ }^{5} T_{H} \times{ }^{H} T_{E} \times{ }^{E} T_{o b j}={ }^{R} T_{5} \times{ }^{5} T_{c a m} \times{ }^{c a m} T_{o b j} \\
& { }^{5} T_{H} \times{ }^{H} T_{E} \times{ }^{E} T_{o b j}={ }^{5} T_{c a m} \times{ }^{c a m} T_{o b j} \\
& { }^{H} T_{E} \times{ }^{E} T_{o b j}={ }^{5} T_{H}^{-1} \times{ }^{5} T_{c a m} \times{ }^{c a m} T_{o b j} \\
& { }^{E} T_{o b j}={ }^{H} T_{E}{ }^{-1} \times{ }^{5} T_{H}^{-1} \times{ }^{5} T_{c a m} \times{ }^{c a m} T_{o b j} \\
& { }^{E} T_{o b j}={ }^{E} T_{H} \times{ }^{H} T_{5} \times{ }^{5} T_{c a m} \times{ }^{c a m} T_{o b j} \\
& { }^{5} T_{\text {cam }}=\left[\begin{array}{cccc}
0 & 0 & -1 & 3 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 5 \\
0 & 0 & 0 & 1
\end{array}\right]{ }^{5} T_{H}=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]{ }^{c a m} T_{o b j}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]{ }^{H} T_{E}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

solution

$$
{ }^{E} T_{o b j}={ }^{E} T_{H} \times{ }^{H} T_{5} \times{ }^{5} T_{c a m} \times{ }^{c a m} T_{o b j}
$$

$$
{ }^{5} T_{\text {cam }}=\left[\begin{array}{cccc}
0 & 0 & -1 & 3 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 5 \\
0 & 0 & 0 & 1
\end{array}\right]{ }^{5} T_{H}=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]{ }^{\text {cam }} T_{o b j}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]{ }^{H} T_{E}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
{ }^{E} T_{H} & ={ }^{H} T_{E}^{-1}
\end{aligned}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & -4 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

solution

$$
\begin{aligned}
& { }^{E} T_{o b j}={ }^{E} T_{H} \times{ }^{H} T_{5} \times{ }^{5} T_{c a m} \times{ }^{c a m} T_{o b j} \\
& { }^{5} T_{c a m}=\left[\begin{array}{cccc}
0 & 0 & -1 & 3 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 5 \\
0 & 0 & 0 & 1
\end{array}\right]{ }^{H} T_{5}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & -4 \\
0 & 0 & 0 & 1
\end{array}\right]{ }^{\text {cam }} T_{o b j}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]{ }^{E} T_{H}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }^{E} T_{o b j}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & -4 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & -1 & 3 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 5 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
-1 & 0 & 0 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & -1 & -4 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

DENAVIT-HARTENBERG REPRESENTATION

- The Denavit-Hartenberg (D-H) method of representation is a very simple way of modeling robot links and joints of any configuration, regardless of the sequence or complexity.
- the direct modeling of robots with the previous techniques is faster and more straight forward.
- D-H representation has an added benefit; analyses of differential motions and Jacobians, dynamic analysis, force analysis, and others are based on the results obtained from D-H representation

Prof.Dick Hartenberg

1950

Introduction

- Notation: Denavit - Hartenberg = DH
- It describes forward kinematics using 4 parameter for each joint: $\theta_{\mathrm{i}}, d_{\mathrm{i}}, a_{\mathrm{i}}, \alpha_{\mathrm{i}}$

Artic. \boldsymbol{i}	d_{i}	θ_{i}	a_{i}	α_{i}
1	450	$180+q_{1}$	-150	90
2	0	$90+q_{2}$	600	0
3	0	$180+q_{3}$	-200	90
4	640	$180+q_{4}$	0	90
5	0	$180+q_{5}$	0	90
6	0	q_{6}	0	0

D-H Procedure

- It is a systematic (and classical) method used to describe forward kinematics of manipulators
- Procedure

1. Determine 1 frame per joint (based on some rules)
2. Determine 4 parameters $\left(\theta_{\mathrm{i}}, d_{\mathrm{i}}, a_{\mathrm{i}}, \alpha_{\mathrm{i}}\right)$ that describe the pose between every two reference frames (based on rules)
3. Using the 4 parameters (per joint) compute the homogeneous transformation matrices
\rightarrow Determine the pose of the end effector with respect to the base (product of the homogeneous transformation matrices)

Step 1: Determine 1 frame per joint (based on some rules)

Joint 3

A. Axis z_{i} : align z_{i} with the axis of motion of joint $i+1$, If the joint is prismatic, the z axis is along the direction of the linear movement.
B. Origin of frame $\{i\}$: At the intersection of $z_{i} \& z_{i-1}$. Or any point if they are in parallel

Denavit-Hartenberg Convention

Step 1: Determine 1 frame per joint (based on some rules)
C. Axis x_{i} : assign x_{i} in the direction of $z_{i-1} \times z_{i}$. If $\left(z_{i-1} \& z_{i}\right)$ are parallel, assign x_{i} along the common normal between $z_{i-1} \& z_{i}$
D. Axis y_{i} : assign \boldsymbol{y}_{i} to complete the frame (following the right-hand rule)

Denavit-Hartenberg Convention

Step 1: Determine 1 frame per joint (based on some rules)

D. End effector frame $\{n\}$:

- \boldsymbol{x}_{n} must be orthogonal to z_{n-1} and it must intersect it (the origin of the frame is usually at the end of the kinematic chain)
- Usually z_{n} goes in the same direction as z_{n-1} pointing outwards
- y_{n} completes the frame (right hand rule)

Denavit-Hartenberg Convention

(2) Assigning the DH Parameters

Joint Parameters

- Joint angle $\left(\theta_{i}\right)$: rotation angle from axis \boldsymbol{x}_{i-1} to axis \boldsymbol{x}_{i} about axis z_{i-1}
\rightarrow It is the joint variable if the i-th joint is revolute
- Joint displacement $\left(d_{i}\right)$: distance from the origin of frame $\{i-1\}$ to the intersection of axis z_{i-1} to axis \boldsymbol{x}_{i} along axis z_{i-1}
\rightarrow It is the joint variable if the i-th joint is prismatic

Link Parameters (constants)

- Link length $\left(a_{i}\right)$: distance from the intersection of axis z_{i-1} and axis \boldsymbol{x}_{i} to the origin of frame $\{i\}$ along axis \boldsymbol{x}_{i} (shortest path)
- Link rotation angle $\left(\alpha_{i}\right)$: rotation angle from axis z_{i-1} to axis z_{i} about axis \boldsymbol{x}_{i}

Denavit-Hartenberg Convention

(2) Assigning the DH Parameters

Link parameters

- a_{i} : distance from $\left[z_{i+1}\right]$ to $\left[z_{i}\right]$.by drawing a line perpendicular to both z axes
- α_{i} : angle from z_{i+1} to z_{i} about \boldsymbol{x}_{i}

Joint n
Joint $n+1$
Joint $n+2$

Denavit-Hartenberg Convention

(2) Assigning the DH Parameters

Joint parameters

- d_{i} : distance from the origin of $\{i-1\}$ to the [intersection of z_{i-1} with x_{i}] along z_{i-1}
- θ_{i} : rotation angle from \boldsymbol{x}_{i-1} to \boldsymbol{x}_{i} about z_{i-1}

Denavit-Hartenberg Convention

(2) Assigning the DH Parameters

Summary

- d_{i} : distance from the origin of $\{i-1\}$ to the [intersection of z_{i-1} with \boldsymbol{x}_{i}] along z_{i-1}
- $\boldsymbol{\theta}_{i}$: rotation angle from \boldsymbol{x}_{i-1} to \boldsymbol{x}_{i} about z_{i-1}
- a_{i} : distance from [the intersection of z_{i-1} with \boldsymbol{x}_{i}] to the origin of $\{i\}$ along \boldsymbol{x}_{i}
- α_{i} : angle from z_{i-1} to z_{i} about \boldsymbol{x}_{i}

Denavit-Hartenberg Reference Frame Layout

Produced by Ethan Tira-Thompson

Denavit-Hartenberg Reference Frame Layout - YouTube

(b)

(e)

(c)

(f)

(d)

(g)

transformation ${ }^{\mathrm{n}} \mathrm{T}_{\mathrm{n}+1}$

$$
\begin{align*}
& { }^{n} T_{n+1}=A_{n+1}=\operatorname{Rot}\left(z, \theta_{n+1}\right) \times \operatorname{Trans}\left(0,0, d_{n+1}\right) \times \operatorname{Trans}\left(a_{n+1}, 0,0\right) \times \operatorname{Rot}\left(x, \alpha_{n+1}\right) \\
& =\left[\begin{array}{cccc}
C \theta_{n+1} & -S \theta_{n+1} & 0 & 0 \\
S \theta_{n+1} & C \theta_{n+1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{n+1} \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{cccc}
1 & 0 & 0 & a_{n+1} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C \alpha_{n+1} & -S \alpha_{n+1} & 0 \\
0 & S \alpha_{n+1} & C \alpha_{n+1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A_{n+1}=\left[\begin{array}{cccc}
C \theta_{n+1} & -S \theta_{n+1} C \alpha_{n+1} & S \theta_{n+1} S \alpha_{n+1} & a_{n+1} C \theta_{n+1} \\
S \theta_{n+1} & C \theta_{n+1} C \alpha_{n+1} & -C \theta_{n+1} S \alpha_{n+1} & a_{n+1} S \theta_{n+1} \\
0 & S \alpha_{n+1} & C \alpha_{n+1} & d_{n+1} \\
0 & 0 & 0 & 1
\end{array}\right] \tag{2.53}
\end{align*}
$$

Example 1: DH of a SCARA Robot

1. Reference frames

- Number joint axis
- Base reference frame: z_{0} along the axis of joint 1 (arbitrary origin, arbitrary x_{0})

Example 1: DH of a SCARA Robot

1. Reference frames

- Axis $z_{i}: z_{i}$ along the axis of joint $i+1$
- Origin of frame $\{i\}$:
a) Intersection of $z_{i} \& z_{i-1}$, or
b) Intersection of z_{i} with normal between $z_{i} \& z_{i-1}$ (If $z_{i} \& z_{i-1}$ parallel: arbitrary normal)
- Axis x_{i} : in the direction of $z_{i-1} \times z_{i}$. If $\left(z_{i-1} \& z_{i}\right)$ are parallel, \boldsymbol{x}_{i} along their common normal
- Axis y_{i} : assign \boldsymbol{y}_{i} to complete the frame (using the right hand rule)

Example 1: DH of a SCARA Robot

1. Reference frames

- End effector frame $\{n\}$:
- \boldsymbol{x}_{n} orthogonal to z_{n-1}, intersecting it (origin at the end of the chain)
- z_{n} in the direction of z_{n-1} pointing outwards
- y_{n} completes the frame

Example 1: DH of a SCARA Robot

2. DH parameters

Joint i	d_{i}	θ_{i}	a_{i}	a_{i}
1	l_{1}	$180+q_{1}$	l_{2}	0
2	0	$-90+q_{2}$	l_{3}	0
3	$-l_{4}+q_{3}$	0	0	0
4	0	$90+q_{4}$	0	180

d_{i} distance from $\{i-1\}$ to [intersection of z_{i-1} with $\left.x_{i}\right]$ along z_{i-1}
$\theta_{i}:$ angle from \boldsymbol{x}_{i-1} to \boldsymbol{x}_{i} alrededor de \boldsymbol{z}_{i-1}
a_{i} : distance from [intersection of z_{i-1} wtih x_{i}] to $\{i\}$ along \boldsymbol{x}_{i}
α_{i} : angle from z_{i-1} to z_{i} about \boldsymbol{x}_{i}

Example 1: DH of a SCARA Robot

3. Homogeneous Transformation Matrices

$$
\begin{aligned}
& \begin{array}{|c|c|c|c|c|}
\hline \text { Jointi } & a_{1} & & a_{1} \\
\hline 1 & l_{1} & 180+q_{1} & l_{2} & 0 \\
\hline 2 & 0 & -90+q_{2} & l_{3} & 0 \\
\hline 3 & -l_{4}+q_{3} & 0 & 0 & 0 \\
\hline 4 & 0 & 90+q_{4} & 0 & 180 \\
\hline
\end{array} \\
& { }^{0} T_{1}\left(q_{1}\right)=\left[\begin{array}{cccc}
-\cos q_{1} & \sin q_{1} & 0 & -l_{2} \cos q_{1} \\
-\sin q_{1} & -\cos q_{1} & 0 & -l_{2} \sin q_{1} \\
0 & 0 & 1 & l_{1} \\
0 & 0 & 0 & 1
\end{array}\right] \quad{ }^{2} T_{3}\left(q_{3}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & q_{3}-l_{4} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }^{1} T_{2}\left(q_{2}\right)=\left[\begin{array}{cccc}
\sin q_{2} & \cos q_{2} & 0 & l_{3} \sin q_{2} \\
-\cos q_{2} & \sin q_{2} & 0 & -l_{3} \cos q_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }^{3} T_{4}\left(q_{4}\right)=\left[\begin{array}{cccc}
-\sin q_{4} & \cos q_{4} & 0 & 0 \\
\cos q_{4} & \sin q_{4} & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Example 1: DH of a SCARA Robot

3. Homogeneous Transformation Matrices

- End effector with respect to the base:

$$
\begin{aligned}
{ }^{0} T_{4} & =\left({ }^{0} T_{1}\right)\left({ }^{1} T_{2}\right)\left({ }^{2} T_{3}\right)\left({ }^{3} T_{4}\right) \\
& =\left[\begin{array}{cccc}
-c_{124} & -s_{124} & 0 & -l_{3} s_{12}-l_{2} c_{1} \\
-s_{124} & c_{124} & 0 & l_{3} c_{12}-l_{2} s_{1} \\
0 & 0 & -1 & l_{1}-l_{4}+q_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- For the initial configuration ($\left.q_{1}=q_{2}=q_{3}=q_{4}=0\right)$:

$$
{ }^{0} T_{4}=\left[\begin{array}{cccc}
-1 & 0 & 0 & -l_{2} \\
0 & 1 & 0 & l_{3} \\
0 & 0 & -1 & l_{1}-l_{4} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Robot in the initial configuration

Compare with the result obtained using the geometric method

THE END

