ROBOTICS KINEMATICS Inverse Kinematics

By Mustafa Shiple

The Inverse of Transformation

Inverse of Transformation

$${}^{U}T_{E} = {}^{U}T_{R}{}^{R}T_{H}{}^{H}T_{E} = {}^{U}T_{P}{}^{P}T_{E}$$
$$[{}^{U}T_{R}]^{-1}[{}^{U}T_{R}{}^{R}T_{H}{}^{H}T_{E}][{}^{H}T_{E}]^{-1} = [{}^{U}T_{R}]^{-1}[{}^{U}T_{P}{}^{P}T_{E}][{}^{H}T_{E}]^{-1}$$
$${}^{R}T_{H} = {}^{U}T_{R}{}^{-1}{}^{U}T_{P}{}^{P}T_{E}{}^{H}T_{E}{}^{-1}$$
$$= {}^{R}T_{U}{}^{U}T_{P}{}^{P}T_{E}{}^{E}T_{H}$$

Inverse matrix

Orthogonal matrices

$$\begin{bmatrix} X_{2} \\ Y_{2} \end{bmatrix} = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix} \begin{bmatrix} X_{1} \\ Y_{1} \end{bmatrix}$$
$$\begin{bmatrix} X_{2} \\ Y_{2} \end{bmatrix} \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix}^{-1} = \begin{bmatrix} X_{1} \\ Y_{1} \end{bmatrix}$$
$$\therefore \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix}^{-1} = \frac{1}{c^{2}(\alpha) + s^{2}(\alpha)} \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix} = G_{R_{L}}^{T}$$
$$G_{R_{L}}^{-1} = G_{R_{L}}^{T} \text{ Orthogonal matrix}$$

$$= \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix} = G_{R_L}^T$$

Local :
$$\begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \end{bmatrix} = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0 \\ -\sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \end{bmatrix} \uparrow$$

Summary

$$Global: \begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cos(\gamma) & -sin(\gamma) \\ 0 & sin(\gamma) & cos(\gamma) \end{bmatrix} \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \end{bmatrix}$$
$$Local: \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cos(\gamma) & sin(\gamma) \\ 0 & -sin(\gamma) & cos(\gamma) \end{bmatrix} \begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \end{bmatrix}$$

$$\begin{aligned} Global : \begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \end{bmatrix} &= \begin{bmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{bmatrix} \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \end{bmatrix} \qquad Global : \begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \end{bmatrix} &= \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \end{bmatrix} \\ Local : \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \end{bmatrix} &= \begin{bmatrix} \cos(\beta) & 0 & -\sin(\beta) \\ 0 & 1 & 0 \\ \sin(\beta) & 0 & \cos(\beta) \end{bmatrix} \begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \end{bmatrix} \qquad Local : \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \end{bmatrix} &= \begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0 \\ -\sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \end{bmatrix} \end{aligned}$$

1

. 1

Properties of a Rotation Matrix

• Example 1

Do the following matrices represent rotation matrices?

a)

$$R_{1} = \begin{bmatrix} -\frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \end{bmatrix}$$
b)

$$R_{2} = \begin{bmatrix} -\frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \end{bmatrix}$$

Solution

a) det $R_1 = \frac{1}{2}$ \Longrightarrow It is not a rotation matrix

b) det
$$R_2 = 1$$

 $R_2 R_2^T = I$ \Longrightarrow It is a rotation matrix

4x4 matrix

$$T = \begin{bmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad T^{-1} = \begin{bmatrix} n_x & n_y & n_z & -\mathbf{p} \cdot \mathbf{n} \\ o_x & o_y & o_z & -\mathbf{p} \cdot \mathbf{o} \\ a_x & a_y & a_z & -\mathbf{p} \cdot \mathbf{a} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{aligned} \mathbf{E} \mathbf{X} = \begin{bmatrix} 0.5 & 0 & 0.866 & 3 \\ 0.866 & 0 & -0.5 & 2 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ T^{-1} = \begin{bmatrix} 0.5 & 0.866 & 0 & -(3 \times 0.5 + 2 \times 0.866 + 5 \times 0) \\ 0 & 0 & 1 & -(3 \times 0 + 2 \times 0 + 5 \times 1) \\ 0.866 & -0.5 & 0 & -(3 \times 0.866 + 2 \times -0.5 + 5 \times 0) \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.866 & 0 & -3.23 \\ 0 & 0 & 1 & -5 \\ 0.866 & -0.5 & 0 & -1.598 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

solution

solution

$${}^{E}T_{obj} = {}^{E}T_{H} \times {}^{H}T_{5} \times {}^{5}T_{cam} \times {}^{cam}T_{obj}$$

$${}^{5}T_{cam} = \begin{bmatrix} 0 & 0 & -1 & 3\\ 0 & -1 & 0 & 0\\ -1 & 0 & 0 & 5\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{5}T_{H} = \begin{bmatrix} 0 & -1 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 4\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{cam}T_{obj} = \begin{bmatrix} 0 & 0 & 1 & 2\\ 1 & 0 & 0 & 2\\ 0 & 1 & 0 & 4\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{H}T_{E} = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 3\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{E}T_{H} = {}^{H}T_{E}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & -3\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{H}T_{5} = {}^{5}T_{H}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 1 & -4\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{H}T_{5} = {}^{5}T_{H}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 1 & -4\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{H}T_{5} = {}^{5}T_{H}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 1 & -4\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{H}T_{5} = {}^{5}T_{H}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 1 & -4\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{H}T_{5} = {}^{5}T_{H}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 1 & -4\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{H}T_{5} = {}^{5}T_{H}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 1 & -4\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{H}T_{5} = {}^{5}T_{H}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{H}T_{5} = {}^{5}T_{H}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{H}T_{5} = {}^{5}T_{H}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{H}T_{5} = {}^{5}T_{H}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{H}T_{5} = {}^{5}T_{H}^{-1} = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{H}T_{5} = {}^{5}T_{H}^{-1} = {}^{5}T_{H}^{-1}$$

solution

$${}^{E}T_{obj} = {}^{E}T_{H} \times {}^{H}T_{5} \times {}^{5}T_{cam} \times {}^{cam}T_{obj}$$

$${}^{5}T_{cam} = \begin{bmatrix} 0 & 0 & -1 & 3 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{H}T_{5} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 1 \end{bmatrix} cam T_{obj} = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{E}T_{H} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{E}T_{obj} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 & 3 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -1 & -4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

DENAVIT-HARTENBERG REPRESENTATION

- The Denavit-Hartenberg (D-H) method of representation is a very simple way of modeling robot links and joints of any configuration, regardless of the sequence or complexity.
- the direct modeling of robots with the previous techniques is faster and more straight forward.
- D-H representation has an added benefit; analyses of differential motions and Jacobians, dynamic analysis, force analysis, and others are based on the results obtained from D-H representation

Prof.Dick Hartenberg

1950

Introduction

- Notation: Denavit Hartenberg = DH
- It describes forward kinematics using 4 parameter for each joint: θ_{i} , d_{i} , a_{i} , α_{i}

Artic. i	d _i	θ_{i}	<i>a</i> _i	ai	
1	450	180+q ₁	-150	90	
2	0	90+q ₂	600	0	
3	0	180+q ₃	-200	90	
4	640	$180+q_4$	0	90	
5	0	180+q ₅	0	90	
6	0	q_6	0	0	

D-H Procedure

 It is a <u>systematic</u> (and classical) method used to describe forward kinematics of manipulators

Procedure

- 1. Determine 1 frame per joint (based on some rules)
- 2. Determine 4 parameters (θ_i , d_i , a_i , α_i) that describe the pose between every two reference frames (based on rules)
- 3. Using the 4 parameters (per joint) compute the homogeneous transformation matrices
 - → Determine the pose of the end effector with respect to the base (product of the homogeneous transformation matrices)

Step 1: Determine 1 frame per joint (based on some rules)

- A. Axis z_i : align z_i with the axis of motion of joint i+1, If the joint is prismatic, the z axis is along the direction of the linear movement.
- **B.** Origin of frame $\{i\}$: At the intersection of $z_i \& z_{i-1}$. Or any point if they are in parallel

Step 1: Determine 1 frame per joint (based on some rules)

- C. Axis x_i : assign x_i in the direction of $z_{i-1} \ge z_i$. If $(z_{i-1} \And z_i)$ are parallel, assign x_i along the common normal between $z_{i-1} \And z_i$
- **D.** Axis y_i : assign y_i to complete the frame (following the right-hand rule)

Step 1: Determine 1 frame per joint (based on some rules)

D. End effector frame $\{n\}$:

- x_n must be orthogonal to z_{n-1} and it must intersect it (the origin of the frame is usually at the end of the kinematic chain)
- Usually z_n goes in the same direction as z_{n-1} pointing outwards
- y_n completes the frame (right hand rule)

(2) Assigning the DH Parameters

Joint Parameters

- Joint angle (θ_i) : rotation angle from axis x_{i-1} to axis x_i about axis z_{i-1}
 - \rightarrow It is the joint variable if the *i*-th joint is revolute
- Joint displacement (d_i): distance from the origin of frame {i-1} to the intersection of axis z_{i-1} to axis x_i along axis z_{i-1}

 \rightarrow It is the joint variable if the *i*-th joint is prismatic

Link Parameters (constants)

- Link length (a_i): distance from the intersection of axis z_{i-1} and axis x_i to the origin of frame {i} along axis x_i (shortest path)
- Link rotation angle (α_i) : rotation angle from axis z_{i-1} to axis z_i about axis x_i

(2) Assigning the DH Parameters

Link parameters

- a_i : distance from $[z_{i+1}]$ to $[z_i]$ by drawing a line perpendicular to both z axes
- α_i : angle from z_{i+1} to z_i about x_i

Note: a_i , α_i have sign (they can be + or -)

(2) Assigning the DH Parameters

Joint parameters

- d_i : distance from the origin of $\{i-1\}$ to the [intersection of z_{i-1} with x_i] along z_{i-1}
- θ_i : rotation angle from x_{i-1} to x_i about z_{i-1}

Note: d_i , θ_i have sign (they can be + or -)

(2) Assigning the DH Parameters

Summary

- d_i : distance from the origin of $\{i-1\}$ to the [intersection of z_{i-1} with x_i] along z_{i-1}
- θ_i : rotation angle from x_{i-1} to x_i about z_{i-1}
- a_i : distance from [the intersection of z_{i-1} with x_i] to the origin of $\{i\}$ along x_i
- α_i : angle from z_{i-1} to z_i about x_i

Denavit-Hartenberg Reference Frame Layout Produced by Ethan Tira-Thompson

Denavit-Hartenberg Reference Frame Layout - YouTube

transformation ⁿT_{n+1}

$^{n}T_{n+1} = A_{n+1} = Rot(z, \theta_{n+1}) \times Trans(0, 0, d_{n+1}) \times Trans(a_{n+1}, 0, 0) \times Rot(x, \alpha_{n+1})$																			
	$\int C\theta_{n+1}$	$-S\theta_{n+1}$	0 0		[1	0	0	0 -		[1	0	0	a_{n+1}		[1	0	0	0	
	$S\theta_{n+1}$	$C\theta_{n+1}$	0 0		0	1	0	0		0	1	0	0		0	$C\alpha_{n+1}$	$-S\alpha_{n+1}$	0	
=	0	0	1 0	×	0	0	1	d_{n+1}	×	0	0	1	0	×	0	$S\alpha_{n+1}$	$C\alpha_{n+1}$	0	
	0	0	0 1		0	0	0	1 _		0	0	0	1		0	0	0	1	
		4	$\begin{bmatrix} C\theta_{n+1} \\ S\theta_{n+2} \end{bmatrix}$	1 -	$-S\theta$ $C\theta_n$	n + 1 n + 1	C	α_{n+1} α_{n+1}	<i>Sθ</i> - <i>C</i>	θ_{n+1}	Sa 15	α_n	$\begin{array}{c} 1 & a_n \\ +1 & a_n \end{array}$	+1C0 +1S6	θ_{n+1}	1			(2 52)
		$A_{n+1} =$	0			$S\alpha_n$	1 + 1)	l		Cα	2 _{n+}	1		d_{n+1}	1				(2.33)

1. Reference frames

- Number joint axis
- <u>Base</u> reference <u>frame</u>: z₀ along the axis of joint 1 (arbitrary origin, arbitrary x₀)

1. Reference frames

- Axis z_i : z_i along the axis of joint i+1
- Origin of frame {*i*}:
 - a) Intersection of $z_i \& z_{i-1}$, or
 - b) Intersection of z_i with normal between $z_i \& z_{i-1}$ (If $z_i \& z_{i-1}$ parallel: arbitrary normal)
- Axis x_i : in the direction of $z_{i-1} \times z_i$. If $(z_{i-1} \& z_i)$ are parallel, x_i along their common normal
- Axis y_i: assign y_i to complete the frame (using the right hand rule)

1. Reference frames

- End effector frame {*n*}:
 - x_n orthogonal to z_{n-1} , intersecting it (origin at the end of the chain)
 - z_n in the direction of z_{n-1} pointing outwards
 - y_n completes the frame

2. DH parameters

Joint <i>i</i>	d _i	$ heta_{ m i}$	a _i	a	
1	l_1	$180+q_1$	l_2	0	
2	0	$-90+q_2$	l_3	0	
3	$-l_4 + q_3$	0	0	0	
4	0	$90+q_4$	0	180	

 d_i : distance from {*i*-1} to [intersection of z_{i-1} with x_i] along z_{i-1}

- θ_i : angle from x_{i-1} to x_i alrededor de z_{i-1}
- *a_i*: distance from [intersection of z_{i-1} with x_i] to {*i*} along x_i
- α_i : angle from z_{i-1} to z_i about x_i

3. Homogeneous Transformation Matrices

1	l_1	$180+q_1$	l_2	0	
2	0	$-90+q_2$	l_3	0	
3	$-l_4 + q_3$	0	0	0	
4	0	90+ q_4	0	180	

$${}^{0}T_{1}(q_{1}) = \begin{bmatrix} -\cos q_{1} & \sin q_{1} & 0 & -l_{2}\cos q_{1} \\ -\sin q_{1} & -\cos q_{1} & 0 & -l_{2}\sin q_{1} \\ 0 & 0 & 1 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}T_{3}(q_{3}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_{3} - l_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}T_{2}(q_{2}) = \begin{bmatrix} \sin q_{2} & \cos q_{2} & 0 & l_{3} \sin q_{2} \\ -\cos q_{2} & \sin q_{2} & 0 & -l_{3} \cos q_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}T_{4}(q_{4}) = \begin{bmatrix} -\sin q_{4} & \cos q_{4} & 0 & 0 \\ \cos q_{4} & \sin q_{4} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3. Homogeneous Transformation Matrices

- End effector with respect to the base:

$${}^{0}T_{4} = \left({}^{0}T_{1}\right)\left({}^{1}T_{2}\right)\left({}^{2}T_{3}\right)\left({}^{3}T_{4}\right)$$
$$= \begin{bmatrix} -c_{124} & -s_{124} & 0 & -l_{3}s_{12} - l_{2}c_{1} \\ -s_{124} & c_{124} & 0 & l_{3}c_{12} - l_{2}s_{1} \\ 0 & 0 & -1 & l_{1} - l_{4} + q_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- For the initial configuration ($q_1 = q_2 = q_3 = q_4 = 0$):

$${}^{0}T_{4} = \begin{bmatrix} -1 & 0 & 0 & -l_{2} \\ 0 & 1 & 0 & l_{3} \\ 0 & 0 & -1 & l_{1} - l_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Verify by inspection, in the diagram

Robot in the initial configuration

Compare with the result obtained using the geometric method

THE END