Robotics Fundamentals

Dr. Mustafa Shiple

Robot History

- 1921: Czech playwright Karl Capek premiered his play R.U.R. in Prague . (machines conquer).
- 2. Definition: Robot the word comes from the Czech word robota which translates to labor or slave.

R.U.R. - ROSSUM'S UNIVERSAL ROBOTS CZECH EDITION

KAREL CAPEK

Eye on Robotics

Robotics is a multi-disciplinary field. Best robotics researchers and engineers will touch upon all disciplines:

- Electrical Engineering concerned primarily with robot actuation, electronic interfacing to computers and sensors, and control algorithms.
- Mechanical Engineering concerned primarily with manipulator/mobile robot design, kinematics, dynamics, compliance and actuation.
- Computer Science concerned primarily with robot programming, planning, and intelligent behavior.

Locomotion and Manipulation

Rolling, Walking, Running, Jumping, Sliding Crawling, Climbing, Swimming, and Flying, etc

ROV

Stability and polygon of support

Center of gravity (COG) is within the polygon determined by the contact points of the robot on the ground, also called polygon of support.

Center of gravity
: P_G (Projection of center of gravity)

Stability and polygon of support

<u>Static</u>: a statically stable robot can stand still without falling over. <u>Dynamic</u>: a dynamically stable robot is stable only while moving

Classification of mechanics

Robot components

- 1. <u>Manipulators</u> are composed of an assembly of links and joints.
- 2. <u>Links</u> are defined as the rigid sections that make up the mechanism
- 3. joints are defined as the connection between two links.

Links rigid body that possesses at least two **nodes** that are *points for attachment to other links*.

- Binary link
- one with two nodes.
- Ternary link

- one with three nodes.

Quaternary link

- one with four nodes.

Links of different order

Joints

- **lower pair** to describe joints with surface contact
- **higher pair** to describe joints with pointor line contact.

Types of motion

Revolute

Prismatic

Degree of freedom

is the number of independent movements that a robot can make $(x,y,\theta\,)$

FIGURE 2-1

A rigid body in a plane has three DOF

Revolute (R) joint—1 DOF

Joint types (**Revolute joint**)

Helical (H) joint—1 DOF

 $\Delta \theta$

Planar (F) joint—3DOF

Planar Joint

Spherical (S) joint—3 DOF

Prismatic (P) joint-1 DOF

Cylindric (C) joint—2 DOF

Degree of freedom

Translation: x, y, z Rotation: Roll, Pitch, Yaw

Grübler's Formula

General rules:-

- 1. Any links (L) has 3 DOF.
- 2. Any ground (G) link reduces DOF by 3
- 3. Any full joints (J_f) reduces DOF by 2
- 4. Any half joints (J_h) reduces DOF by 1

$$DOF = 3(L-1) - 2J_f - J_h$$

Example:

 $DOF = 3(L - 1) - 2J_f - J_h$ = 3(4-1)-2*4-0 =1

Kinematics diagram (1DOF!!)

Selective Compliant Articulated Robot for Assembly

SCARA arm (R||R||P manipulator VVP)

Cartesian configuration

Soft robots

